

# FCC DoC TEST REPORT

For

## Fanless embedded controller

## MODEL: xxxxAEC-6831-xxxxxx; xxxxAEC-6822-xxxxxx

Test Report Number: 90410204-F

Issued to:

# **AAEON Technology Inc.**

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by:

### **Compliance Certification Services Inc.**

Sindian BU.

No.163-1, Jhongsheng Rd., Sindian City, Taipei County 23151, Taiwan TEL: 886-2-22170894

FAX: 886-2-22171029

Issued Date: April 16, 2009



**Note:** This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.



Report No.: 90410204-F

## **Revision History**

| Rev. | Issue<br>Date | Revisions     | Effect<br>Page | Revised By |
|------|---------------|---------------|----------------|------------|
| 00   |               | Initial Issue | ALL            |            |
|      |               |               |                |            |
|      |               |               |                |            |
|      |               |               |                |            |

## **TABLE OF CONTENTS**

| 1    | TEST RESULT CERTIFICATION                | . 4 |
|------|------------------------------------------|-----|
| 2    | EUT DESCRIPTION                          |     |
| 3    | TEST METHODOLOGY                         | . 6 |
| 3.1. | DECISION OF FINAL TEST MODE              | . 6 |
| 3.2. | EUT SYSTEM OPERATION                     | . 6 |
| 4    | SETUP OF EQUIPMENT UNDER TEST            | . 7 |
| 4.1. | DESCRIPTION OF SUPPORT UNITS             |     |
| 4.2. | CONFIGURATION OF SYSTEM UNDER TEST       | . 8 |
| 5    | FACILITIES AND ACCREDITATIONS            | . 9 |
| 5.1. | FACILITIES                               | . 9 |
| 5.2. | ACCREDITATIONS                           |     |
| 5.3. | MEASUREMENT UNCERTAINTY                  | . 9 |
| 6    | CONDUCTED EMISSION MEASUREMENT           | 10  |
| 6.1. | LIMITS OF CONDUCTED EMISSION MEASUREMENT | 10  |
| 6.2. | TEST INSTRUMENTS                         | 10  |
| 6.3. | TEST PROCEDURES                          | 11  |
| 6.4. | TEST SETUP                               | 12  |
| 6.5. | DATA SAMPLE                              | 12  |
| 6.6. | TEST RESULTS                             | 13  |
| 7    | RADIATED EMISSION MEASUREMENT            | 14  |
| 7.1. | LIMITS OF RADIATED EMISSION MEASUREMENT  | 14  |
| 7.2. | TEST INSTRUMENTS                         | 14  |
| 7.3. | TEST PROCEDURES                          | 15  |
| 7.4. | TEST SETUP                               | 16  |
| 7.5. | DATA SAMPLE                              | 17  |
| 7.6. | TEST RESULTS                             | 18  |
| 8    | PHOTOGRAPHS OF THE TEST CONFIGURATION    | 20  |

Report No.: 90410204-F

# **1** TEST RESULT CERTIFICATION

| Fanless embedded controller                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|
| xxxxxAEC-6831-xxxxxxx (Where x is 0-9, A-Z, - or blank);<br>xxxxxAEC-6822-xxxxxxx (Where x is 0-9, A-Z, - or blank) |
| AAEON                                                                                                               |
| AAEON Technology Inc.<br>5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City,<br>Taipei, Taiwan, R.O.C.            |
| AAEON Technology Inc.<br>5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City,<br>Taipei, Taiwan, R.O.C.            |
| April 10, 2009 & April 13, 2009                                                                                     |
|                                                                                                                     |

| EMISSION                                          |                       |        |                    |  |  |  |
|---------------------------------------------------|-----------------------|--------|--------------------|--|--|--|
| Standard                                          | Item                  | Result | Remarks            |  |  |  |
| FCC 47 CFR Part 15 Subpart B,<br>ICES-003 Issue 4 | Conducted (Main Port) | PASS   | Meet Class A limit |  |  |  |
| ANSI C63.4-2003                                   | Radiated              | PASS   | Meet Class A limit |  |  |  |

*Note:* 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

#### Deviation from Applicable Standard

None

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

N

Vino Giang

Vince Chiang Assistant Manager of Sindian BU. **Reviewed by:** 

lesta Mc

Vesta Hsu Supervisor of report document dept. of Sindian BU.

Page 4



Report No.: 90410204-F

#### **EUT DESCRIPTION** 2

| Product                      | Fanless embedded controller                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------|
| Brand Name                   | AAEON                                                                                                            |
| Model                        | xxxxAEC-6831-xxxxxx (Where x is 0-9, A-Z, - or blank);<br>xxxxxAEC-6822-xxxxxx (Where x is 0-9, A-Z, - or blank) |
| Applicant                    | AAEON Technology Inc.                                                                                            |
| Housing material             | Metal Case                                                                                                       |
| Identify Number              | 90410204                                                                                                         |
| Received Date                | April 10, 2009                                                                                                   |
| EUT Power Rating             | 9~30VDC from Adaptor                                                                                             |
| AC Power During Test         | 120VAC / 60Hz to Adaptor                                                                                         |
| AC Adaptor Manufacturer      | FSP GROUP INC.                                                                                                   |
| AC Adaptor Model             | FSP036-1AD101C                                                                                                   |
| AC Adaptor Power Rating      | I/P: 100-240VAC, 50-60Hz; O/P: 12VDC                                                                             |
| DC Power Cord Type           | Unshielded, 1.8m (Non-Detachable, with a core) to AC Adaptor                                                     |
| <b>OSC/Clock Frequencies</b> | 14.31818MHz; 25MHz; 32.768KHz; 24.576MHz                                                                         |

### **Model Differences**

|            | Model Name | Difference                    | Tested (Checked) |  |
|------------|------------|-------------------------------|------------------|--|
| Original   | AEC-6831   | Differences are the I/O Port. | $\boxtimes$      |  |
| Additional | AEC-6822   | Differences are the 1/01 off. | $\boxtimes$      |  |

## **I/O PORT**

#### AEC-6831:

|    | I/O PORT TYPES  | Q'TY | TESTED WITH |
|----|-----------------|------|-------------|
| 1. | SIO Port        | 2    | 2           |
| 2. | VGA Port        | 1    | 1           |
| 3. | DVI Port        | 1    | 1           |
| 4. | Audio in Port   | 1    | 1           |
| 5. | Microphone Port | 1    | 1           |
| 6. | Earphone Port   | 1    | 1           |
| 7. | USB Port        | 4    | 4           |
| 8. | LAN Port        | 2    | 2           |
| 9. | CFD Slot        | 1    | 1           |

Report No.: 90410204-F

### AEC-6822:

|    | I/O PORT TYPES | Q'TY | TESTED WITH |
|----|----------------|------|-------------|
| 1. | SIO Port       | 3    | 3           |
| 2. | VGA Port       | 1    | 1           |
| 3. | DVI Port       | 1    | 1           |
| 4. | USB Port       | 4    | 4           |
| 5. | LAN Port       | 2    | 2           |

Note: None.

# **3** TEST METHODOLOGY

# **3.1. DECISION OF FINAL TEST MODE**

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration/ mode is as the following:

#### **Conduction Modes:**

| 1. | AEC-6831 | Normal Mode |
|----|----------|-------------|
| 2. | AEC-6822 | Normal Mode |

#### **Radiation Modes:**

| 1  | AEC-6831 | Normal Mode          |
|----|----------|----------------------|
| 1. | ALC-0031 | Normal Mode / 1-8GHz |
| 2. | AEC-6822 | Normal Mode          |

Conduction: Mode 1

Radiation: Mode 1

## **3.2. EUT SYSTEM OPERATION**

- 1. Windows XP boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.
- 3. Run Winemc.exe and choose media player to play music.
- 4. Run Winemc.exe and choose "D:/ & E:/ & F:/" to test EUT.
- 5. Press the start menu, select executive and type ping 192.168.0.1 -t (EUT), ping 192.168.0.2 -t (EUT), ping 192.168.0.3 -t (Server PC).

Note: Test program is self-repeating throughout the test.

#### Page 6

# **4** SETUP OF EQUIPMENT UNDER TEST

# **4.1. DESCRIPTION OF SUPPORT UNITS**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

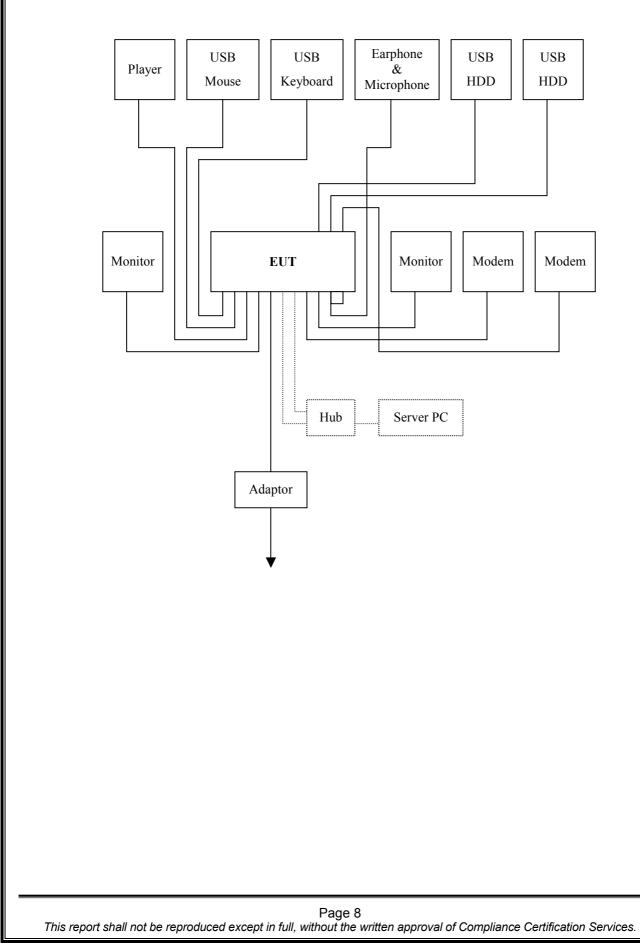
#### **EUT Devices:**

| No.       | Equipment                                                                                | Model No.                                          | Trade Name     |  |  |
|-----------|------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|--|--|
| 1         | CPU (1.6GHz)                                                                             | ATOM N270                                          | Intel          |  |  |
| 2         | CFD (4GB)                                                                                | N/A                                                | Transcend      |  |  |
| 3         | Memory (DDR2-667, 512MB)                                                                 | ELPIDA E5108AJBG-6E-E                              | DSL            |  |  |
| 4         | CPU Board                                                                                | GENE-9455-xxxxxx (Where x is 0-9, A-Z, - or blank) | AAEON          |  |  |
| 5         | Power Adaptor                                                                            | FSP036-1AD101C                                     | FSP GROUP INC. |  |  |
| Note: Cli | Note: Client consigns only one model sample to test (CPU Board Model Number: GENE-9455). |                                                    |                |  |  |

### **Peripherals Devices:**

| No.  | Equipment                | Model No.   | Serial No.      | FCC ID / BSMI ID    | Trade Name       | Data Cable                       | Power Cord          |
|------|--------------------------|-------------|-----------------|---------------------|------------------|----------------------------------|---------------------|
| 1    | Player                   | RQ-L11LT    | N/A             | BSMI ID: 3912A162   | Panasonic        | Unshielded, 1.8m                 | N/A                 |
| 2    | USB Mouse                | M-BT85      | 831114-0000     | DOC<br>BSMI: R41126 | LOGITECH         | Shielded, 1.8m                   | N/A                 |
| 3    | USB Keyboard             | Y-BL49      | STW42600036     | DOC<br>BSMI: R41126 | LOGITECH         | Shielded, 1.8m                   | N/A                 |
| 4    | Earphone &<br>Microphone | MSB301      | N/A             | N/A                 | e-Sense          | Unshielded, 1.8m                 | N/A                 |
| 5~6  | USB HDD                  | F12-U       | N/A             | BSMI ID: 4912A002   | TeraSys          | Shielded, 1.8m                   | N/A                 |
| 7    | Monitor                  | XL24        | ED24H2DPB00001W | DOC<br>BSMI: R33475 | SAMSUNG          | Shielded, 1.8m<br>with two cores | Unshielded,<br>1.8m |
| 8    | Monitor                  | 710V        | GS17H9NXA05864E | DOC<br>BSMI: R33475 | SAMSUNG          | Shielded, 1.8m<br>with two cores | Unshielded,<br>1.8m |
| 9~10 | Modem                    | 5JEG4033MKO | N/A             | 5RJTAI-35500-M5-E   | TOP-<br>SOLUTION | Shielded, 1.8m                   | Unshielded,<br>1.8m |
| 11   | Hub                      | DGS-1008D   | N/A             | N/A                 | D-Link           | Unshielded,<br>20m X2            | Unshielded,<br>1.8m |
| 12   | Server PC                | DCNE        | CV8DH1S         | DOC<br>BSMI: R33002 | DELL             | Unshielded, 1.0m                 | Unshielded,<br>1.8m |

#### Note:


- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 7

# 

Report No.: 90410204-F

# **4.2.** CONFIGURATION OF SYSTEM UNDER TEST



# **5** FACILITIES AND ACCREDITATIONS

# **5.1. FACILITIES**

All measurement facilities used to collect the measurement data are located at CCS Taiwan Sindian BU. at No.163-1, Jhongsheng Rd., Sindian City, Taipei County 23151, Taiwan.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

# **5.2.** ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

| Taiwan | TAF  |
|--------|------|
| USA    | A2LA |

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

| Industry Canada |
|-----------------|
| TUV Rheinland   |
| VCCI            |
| BSMI            |
| FCC             |
|                 |

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.ccsemc.com.tw</u>

# **5.3. MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement         | Frequency             | Uncertainty |  |
|---------------------|-----------------------|-------------|--|
| Conducted emissions | 0.15MHz~30MHz         | ± 1.7366    |  |
| Padiated amissions  | $30 MHz \sim 200 MHz$ | ± 3.8792    |  |
| Radiated emissions  | 200MHz~1000MHz        | ± 3.8914    |  |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2006, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than  $U_{CISPR}$  which is 3.6dB and 5.2dB respectively. CCS values (called  $U_{Lab}$  in CISPR 16-4-2) is less than  $U_{CISPR}$  as shown in the table above. Therefore, MU need not be considered for compliance.

#### Page 9

# **6** CONDUCTED EMISSION MEASUREMENT

## **6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT**

| FREQUENCY (MHz)  | Class A (dBuV) |         | Class B (dBuV) |         |
|------------------|----------------|---------|----------------|---------|
| FREQUENCI (MIIZ) | Quasi-peak     | Average | Quasi-peak     | Average |
| 0.15 - 0.5       | 79             | 66      | 66 - 56        | 56 - 46 |
| 0.50 - 5.0       | 73             | 60      | 56             | 46      |
| 5.0 - 30.0       | 73             | 60      | 60             | 50      |

NOTE:

(1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

# **6.2.** TEST INSTRUMENTS

| Conducted Emission room # B |              |                  |            |            |  |  |
|-----------------------------|--------------|------------------|------------|------------|--|--|
| Name of Equipment           | Manufacturer | Calibration Due  |            |            |  |  |
| TEST RECEIVER               | R&S          | ESHS10           | 843743/015 | 03/29/2010 |  |  |
| LISN (EUT)                  | FCC          | FCC-LISN-50-32-2 | 08009      | 03/29/2010 |  |  |
| LISN                        | EMCO         | 3825/2           | 1382       | 01/05/2010 |  |  |
| BNC CABLE                   | Huber+Suhner | RG 223/U         | BNC B2     | 01/12/2010 |  |  |
| Pulse Limiter               | R&S          | ESH3-Z2          | 100374     | 08/22/2009 |  |  |
| THERMO-<br>HYGRO METER      | ТОР          | HA-202           | 9303-3     | 02/04/2010 |  |  |
| Test S/W                    | EMI 32.exe   |                  |            |            |  |  |

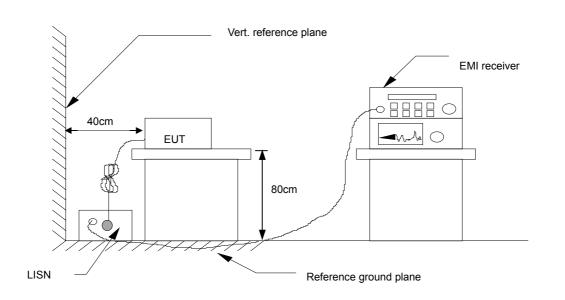
**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.



### **6.3. TEST PROCEDURES** (please refer to measurement standard or CCS SOP PA-031)

#### **Procedure of Preliminary Test**


- The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 12 mm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

#### Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

Report No.: 90410204-F

# **6.4. TEST SETUP**



• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

# **6.5. DATA SAMPLE**

| Freq.<br>(MHz) | Read<br>Level<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>Line<br>(dBuV) | Over<br>Limit<br>(dB) | Remark<br>(P/Q/A) | Line<br>(L1/L2) |
|----------------|-------------------------|----------------|-----------------|-------------------------|-----------------------|-------------------|-----------------|
| X.XX           | 42.95                   | 0.55           | 43.50           | 73                      | -29.50                | Q                 | L1              |

| Freq.      | = Emission frequency in MHz             |
|------------|-----------------------------------------|
| Read Level | = Uncorrected Analyzer/Receiver reading |
| Factor     | = Insertion loss of LISN + Cable Loss   |
| Level      | = Read Level + Factor                   |
| Limit Line | = Limit stated in standard              |
| Over Limit | = Reading in reference to limit         |
| Р          | = Peak Reading                          |
| Q          | = Quasi-peak Reading                    |
| А          | = Average Reading                       |
| L1         | = Hot side                              |

L2 = Neutral side

#### **Calculation Formula**

Over Limit (dB) = Level (dBuV) – Limit Line (dBuV)



## **6.6. TEST RESULTS**

| Model No.                   | AEC-6831                 | 6dB Bandwidth | 10 KHz |
|-----------------------------|--------------------------|---------------|--------|
| Environmental<br>Conditions | 22deg.C, 58% RH, 1010hPa | Test Mode     | Mode 1 |
| Tested by                   | Willy Hsu                |               |        |

(The chart below shows the highest readings taken from the final data.)

|                | Six Highest Conducted Emission Readings |                |                 |                         |                       |                   |                 |
|----------------|-----------------------------------------|----------------|-----------------|-------------------------|-----------------------|-------------------|-----------------|
| Free           | quency Ran                              | ge Investiga   | ated            |                         | 150 KHz to            | 30 MHz            |                 |
| Freq.<br>(MHz) | Read<br>Level<br>(dBuV)                 | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>Line<br>(dBuV) | Over<br>Limit<br>(dB) | Remark<br>(P/Q/A) | Line<br>(L1/L2) |
| 0.182          | 35.99                                   | 11.08          | 47.07           | 79.00                   | -31.93                | Р                 | L1              |
| 0.251          | 31.00                                   | 10.83          | 41.83           | 79.00                   | -37.17                | Р                 | L1              |
| 13.915         | 31.70                                   | 10.69          | 42.40           | 73.00                   | -30.60                | Р                 | L1              |
| 14.440         | 30.26                                   | 10.70          | 40.96           | 73.00                   | -32.04                | Р                 | L1              |
| 0.184          | 36.01                                   | 10.73          | 46.74           | 79.00                   | -32.26                | Р                 | L2              |
| 13.841         | 30.62                                   | 10.39          | 41.01           | 73.00                   | -31.99                | Р                 | L2              |

*NOTE:* 1. *L*1 = *Line One (Live Line) / L*2 = *Line Two (Neutral Line)* 

2. The emission level was or more than 2dB below the Average limit, so no re-check anymore.

Page 13 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

# **7** RADIATED EMISSION MEASUREMENT

## 7.1. LIMITS OF RADIATED EMISSION MEASUREMENT

| FREQUENCY (MHz) | dBuV/m (At 10m) |         |  |
|-----------------|-----------------|---------|--|
|                 | Class A         | Class B |  |
| $30 \sim 230$   | 40              | 30      |  |
| 230 ~ 1000      | 47              | 37      |  |

| Frequency (MHz)   | Class A (dBu | V/m) (At 3m) | Class B (dBuV/m) (At 3m) |      |  |
|-------------------|--------------|--------------|--------------------------|------|--|
| rrequency (writz) | Average      | Peak         | Average                  | Peak |  |
| Above 1000        | 60           | 80           | 54                       | 74   |  |

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level  $(dBuV/m) = 20 \log Emission \ level (uV/m)$ .

(3) 10m to 3m: 20 log (3/10) = -10.4576 dB.

## 7.2. TEST INSTRUMENTS

| <b>Open Area Test Site # I</b>   |                    |               |               |                            |  |  |
|----------------------------------|--------------------|---------------|---------------|----------------------------|--|--|
| Name of Equipment                | Manufacturer Model |               | Serial Number | <b>Calibration Due</b>     |  |  |
| MEASURE RECEIVER                 | SCHAFFNER          | SCR3501       | 338           | 07/07/2009                 |  |  |
| SPECTRUM ANALYZER                | ADVANTEST          | R3132         | 120900008     | No Calibration<br>Required |  |  |
| ANTENNA                          | SCHAFFNER          | CBL 6112B     | 2809          | 09/08/2009                 |  |  |
| AMPLIFIER                        | SCHAFFNER          | CPA9231A      | 3626          | 10/12/2009                 |  |  |
| CABLE                            | BELDEN             | 9913          | N-TYPE #I2    | 02/22/2010                 |  |  |
| THERMO-<br>HYGRO METER           | TECPEL             | DTM-303       | 080268        | 05/11/2009                 |  |  |
| Test S/W                         |                    | Lab VII       | EW 7.1        |                            |  |  |
|                                  | Ab                 | ove 1GHz Used |               |                            |  |  |
| SPECTRUM ANALYZER<br>(3Hz-44GHz) | Agilent            | E4446A        | MY48250064    | 10/28/2009                 |  |  |
| ANTENNA<br>(1-18GHz)             | EMCO               | 3115          | 00022256      | 01/22/2010                 |  |  |
| AMPLIFIER<br>(1-18GHz)           | HP                 | 8449B         | 3008A01266    | 01/19/2010                 |  |  |
| CABLE<br>(1-18GHz)               | JYEBAO             | LL142         | SMA#RS1       | 01/19/2010                 |  |  |
| CABLE<br>(1-18GHz)               | HUBER<br>+SUHNER   | SUCOFLEX 104  | SMA#RS3       | 01/19/2010                 |  |  |
| CABLE<br>(1-18GHz)               | JYEBAO             | LL142         | SMA#C1        | 01/19/2010                 |  |  |
| Test S/W                         | EZ-EMC             |               |               |                            |  |  |

*NOTE:* 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to *NML/ROC and NIST/USA*.

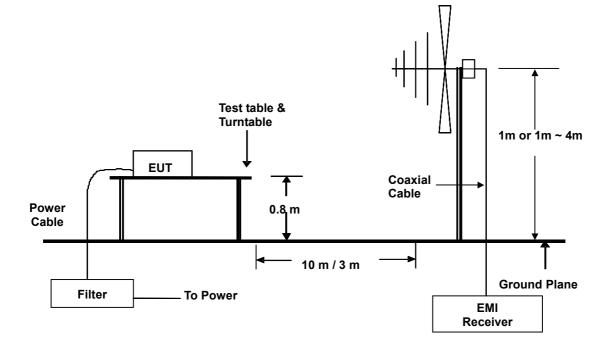
2. N.C.R = No Calibration Request.

#### Page 14



## **7.3. TEST PROCEDURES** (please refer to measurement standard or CCS SOP PA-031)

#### **Procedure of Preliminary Test**


- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 10/3 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 8000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Report No.: 90410204-F

## **Procedure of Final Test**

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 8000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

# **7.4. TEST SETUP**



• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Report No.: 90410204-F

# 7.5. DATA SAMPLE

#### **Below 1GHz**

| Freq. | Reading  | Factor | Result   | Limit    | Margin | Remark  | Pol.  |
|-------|----------|--------|----------|----------|--------|---------|-------|
| (MHz) | (dBuV/m) | (dB)   | (dBuV/m) | (dBuV/m) | (dB)   | (P/Q/A) | (H/V) |
| X.XX  | 14.0     | 12.2   | 26.2     | 40       | -13.8  | Q       | Н     |

| Freq.   | = Emission frequency in MHz                                            |
|---------|------------------------------------------------------------------------|
| Reading | = Uncorrected Analyzer/Receiver reading                                |
| Factor  | = Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain |
| Result  | = Reading + Factor                                                     |
| Limit   | = Limit stated in standard                                             |
| Margin  | = Reading in reference to limit                                        |
| Р       | = Peak Reading                                                         |
| Q       | = Quasi-peak Reading                                                   |
| А       | = Average Reading                                                      |
| Н       | = Antenna Polarization: Horizontal                                     |
| V       | = Antenna Polarization: Vertical                                       |
|         |                                                                        |

#### **Calculation Formula**

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

#### Above 1GHz

| Freq. | Reading | Factor | Result   | Limit    | Margin | Detector | Pol.  |
|-------|---------|--------|----------|----------|--------|----------|-------|
| (MHz) | (dBuV)  | (dB)   | (dBuV/m) | (dBuV/m) | (dB)   | (P/A)    | (H/V) |
| X.XX  | 42.95   | 0.55   | 43.50    | 60       | -16.50 | А        |       |

Freq. = Emission frequency in MHz

- Reading = Uncorrected Analyzer/Receiver reading
- = Antenna Factor + Cable Loss Amplifier Gain Factor
- Result = Reading + Factor
- = Limit stated in standard Limit
- = Result Limit Margin
- = Peak Reading Р
- = Average Reading А
- Η = Antenna Polarization: Horizontal V
  - = Antenna Polarization: Vertical

Report No.: 90410204-F

# **7.6. TEST RESULTS**

#### **Below 1GHz**

| Model No.                   | AEC-6831                  | Test Mode        | Mode 1   |
|-----------------------------|---------------------------|------------------|----------|
| Environmental<br>Conditions | 25deg.C, 55% RH, 1005 hPa | 6dB Bandwidth    | 120 KHz  |
| Antenna Pole                | Vertical / Horizontal     | Antenna Distance | 10m      |
| <b>Detector Function</b>    | Quasi-peak.               | Tested by        | John Yen |

(The chart below shows the highest readings taken from the final data.)

| Six Highest Radiated Emission Readings |                   |                |                    |                   |                |                   |               |  |  |
|----------------------------------------|-------------------|----------------|--------------------|-------------------|----------------|-------------------|---------------|--|--|
| Free                                   | quency Rang       | ge Investiga   | ted                | 30 N              | 1Hz to 1000    | MHz at 10         | m             |  |  |
| Freq.<br>(MHz)                         | Reading<br>(dBuV) | Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark<br>(P/Q/A) | Pol.<br>(H/V) |  |  |
| 108.060                                | 47.00             | -16.76         | 30.24              | 40.00             | -9.76          | Q                 | V             |  |  |
| 124.991                                | 43.62             | -16.01         | 27.61              | 40.00             | -12.39         | Q                 | V             |  |  |
| 164.364                                | 46.60             | -17.59         | 29.01              | 40.00             | -10.99         | Q                 | V             |  |  |
| 194.380                                | 50.32             | -18.21         | 32.11              | 40.00             | -7.89          | Q                 | V             |  |  |
| 500.009                                | 41.85             | -7.82          | 34.03              | 47.00             | -12.97         | Q                 | V             |  |  |
| 749.995                                | 34.30             | -4.43          | 29.87              | 47.00             | -17.13         | Q                 | V             |  |  |

(The chart below shows the highest readings taken from the final data.)

|                | Six Highest Radiated Emission Readings |                |                    |                   |                |                   |               |  |  |
|----------------|----------------------------------------|----------------|--------------------|-------------------|----------------|-------------------|---------------|--|--|
| Fre            | quency Rang                            | ge Investigat  | ted                | 30 M              | [Hz to 1000]   | MHz at 10         | m             |  |  |
| Freq.<br>(MHz) | Reading<br>(dBuV)                      | Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark<br>(P/Q/A) | Pol.<br>(H/V) |  |  |
| 108.192        | 44.96                                  | -16.75         | 28.21              | 40.00             | -11.79         | Q                 | Н             |  |  |
| 114.991        | 38.69                                  | -16.26         | 22.43              | 40.00             | -17.57         | Q                 | Н             |  |  |
| 194.340        | 42.96                                  | -18.21         | 24.75              | 40.00             | -15.25         | Q                 | Н             |  |  |
| 250.000        | 44.63                                  | -14.25         | 30.38              | 47.00             | -16.62         | Q                 | Н             |  |  |
| 750.001        | 32.60                                  | -4.43          | 28.17              | 47.00             | -18.83         | Q                 | Н             |  |  |
| 1000.000       | 33.60                                  | -1.45          | 32.15              | 47.00             | -14.85         | Q                 | Н             |  |  |

REMARKS: 1. 30MHz to 1000MHz test is Applicable CISPR 22 / EN 55022 standard.

2. The other emission levels were very low against the limit.

3. P= Peak Reading; Q= Quasi-peak Reading; A= Average Reading

#### Page 18

#### Above 1GHz

| Model No.                   | AEC-6831               | Test Mode        | Mode 1   |
|-----------------------------|------------------------|------------------|----------|
| Environmental<br>Conditions | 26°C, 60% RH, 1010mbar | 6dB Bandwidth    | 1000 KHz |
| Antenna Pole                | Vertical / Horizontal  | Antenna Distance | 3m       |
| Detector Function           | Peak or Average        | Tested by        | John Yen |

(The chart below shows the highest readings taken from the final data.)

|                | Six Highest Radiated Emission Readings |                |                    |                   |                |                   |               |  |  |  |
|----------------|----------------------------------------|----------------|--------------------|-------------------|----------------|-------------------|---------------|--|--|--|
| Fre            | quency Rang                            | ge Investigat  | ted                | 1000              | MHz to 800     | 0 MHz at 3        | 3m            |  |  |  |
| Freq.<br>(MHz) | Reading<br>(dBuV)                      | Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector<br>(P/A) | Pol.<br>(H/V) |  |  |  |
| 1748.000       | 39.75                                  | -7.46          | 32.29              | 80.00             | -47.71         | Р                 | V             |  |  |  |
| 3074.000       | 39.99                                  | -1.99          | 38.00              | 80.00             | -42.00         | Р                 | V             |  |  |  |
| 3516.000       | 44.05                                  | -0.75          | 43.30              | 80.00             | -36.70         | Р                 | V             |  |  |  |
| 4298.000       | 44.98                                  | 0.96           | 45.94              | 80.00             | -34.06         | Р                 | V             |  |  |  |
| 5352.000       | 41.96                                  | 3.97           | 45.93              | 80.00             | -34.07         | Р                 | V             |  |  |  |
| 6610.000       | 42.92                                  | 4.46           | 47.38              | 80.00             | -32.62         | Р                 | V             |  |  |  |

(The chart below shows the highest readings taken from the final data.)

| Six Highest Radiated Emission Readings |                   |                |                    |                            |                |                   |               |  |
|----------------------------------------|-------------------|----------------|--------------------|----------------------------|----------------|-------------------|---------------|--|
| Free                                   | quency Rang       | ge Investigat  | ted                | 1000 MHz to 8000 MHz at 3m |                |                   |               |  |
| Freq.<br>(MHz)                         | Reading<br>(dBuV) | Factor<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)          | Margin<br>(dB) | Detector<br>(P/A) | Pol.<br>(H/V) |  |
| 2428.000                               | 40.88             | -4.53          | 36.35              | 80.00                      | -43.65         | Р                 | Н             |  |
| 3414.000                               | 43.23             | -1.04          | 42.19              | 80.00                      | -37.81         | Р                 | Н             |  |
| 4366.000                               | 43.68             | 0.97           | 44.65              | 80.00                      | -35.35         | Р                 | Н             |  |
| 4944.000                               | 43.29             | 2.51           | 45.80              | 80.00                      | -34.20         | Р                 | Н             |  |
| 5998.000                               | 42.11             | 4.20           | 46.31              | 80.00                      | -33.69         | Р                 | Н             |  |
| 6984.000                               | 42.88             | 5.36           | 48.24              | 80.00                      | -31.76         | Р                 | Н             |  |

**REMARKS:** 1. The other emission levels were very low against the limit. 2. P= Peak Reading; A= Average Reading.

#### Page 19

Report No.: 90410204-F

#### 8 **PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST**







Report No.: 90410204-F

# **RADIATED EMISSION TEST**



Page 21 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.