

EMC COMPLIANCE TEST REPORT

for

Industrial Display Monitor

Trade Name : N/A

Model Number : OPD-215ABT

Product Family: OPD-215ART; OPD-215AT

Serial Number : N/A

Report Number : 02E0031-E

Date : April 01, 2002

Regulations : See below

Standards	Results (Pass/Fail)
EN 55022: 1998	PASS
EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000	PASS
EN 61000-3-3: 1995	PASS
EN 55024: 1998	PASS
- IEC 61000-4-2: 1995 +A2: 2000	PASS
- IEC 61000-4-3: 1995	PASS
- IEC 61000-4-4: 1995	PASS
- IEC 61000-4-5: 1995	PASS
- IEC 61000-4-6: 1996	PASS
- IEC 61000-4-8: 1993	N/A
- IEC 61000-4-11: 1994	PASS

Prepared for:

AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C.

Prepared by:

C&C LABORATORY CO., LTD.

#B1, 1st Fl., Universal Center, No. 183, Sec. 1, Tatung Rd., Hsi Chin, Taipei Hsien, Taiwan, R.O.C.

> TEL: (02)86422071 FAX: (02)86422256

This report shall not be reproduced, except in full, without the written approval of C&C Laboratory Co., Ltd.

ϵ

EC-Declaration of Conformity

For the following equipment:		
Industrial Display Monitor		
(Product Name)		
OPD-215ABT; OPD-215ART; O	PD-215AT	
(Model Designation / Trade nam	le)	
AAEON Technology Inc.		
(Manufacturer Name)		
5F, No. 135, Lane 235, Pao Chia	o Rd., Hsin-Tien City,	Taipei, Taiwan, R. O. C.
Approximation of the Laws of the (89/336/EEC, Amended by 92/3	ne Member States related 1/EEC, 93/68/EEC &	nents set out in the Council Directive on the ting to Electromagnetic Compatibility Directive 98/13/EC), For the evaluation regarding the by 92/31/EEC & 93/68/EEC & 98/13/EC) the
V EN 55022: 1998		
V EN 61000-3-2: 1995+A1: 1	1998+A2: 1998+A14: 1	2000
<u>V</u> EN 61000-3-3: 1995		
V EN55024: 1998		
IEC 61000-4-2: 1995 +A2:	2000, IEC 61000-4-3:	1995, IEC 61000-4-4: 1995
IEC 61000-4-5: 1995, IEC 6	51000-4-6: 1996, IEC	61000-4-11: 1994
The following manufacturer / imp	porter or authorized re	presentative established within the EUT is
responsible for this declaration:		
(Company Name)		
(Company Address)		
Person responsible for making this	is declaration:	
(Name, Surname)		
(Position / Title)		
(Place)	(Date)	(Legal Signature)
Accordited Lab of AQLA DCMI		D 0

TABLE OF CONTENTS

DESCRIPTION	PAGE
VERIFICATION OF COMPLIANCE	5
GENERAL INFORMATION	6
SYSTRM DESCRIPTION	7
PRODUCT INFORMATION	8
SUPPORT EQUIPMENT	9
TEST FACILITY	10
TEST EQUIPMENT	11
SECTION 1 EN 55022(LINE CONDUCTED & RADIATED EMISSION)	14
MEASUREMENT PROCEDURE & LIMIT (LINE CONDUCTED EMISSION TEST)	14
MEASUREMENT PROCEDURE & LIMIT (RADIATED EMISSION TEST)	17
BLOCK DIAGRAM OF TEST SETUP	19
SUMMARY DATA	20
SECTION 2 EN61000-3-2 & EN 61000-3-3 (POWER HARMONICS	22
& VOLTAGE FLUCTUATION/FLICKER)	
BLOCK DIAGRAM OF TEST SETUP	22
RESULT	22
SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE)	33
BLOCK DIAGRAM OF TEST SETUP	34
TEST PROCEDURE	34
PERFORMANCE & RESULT	38
SECTION 4 IEC 61000-4-3 (RADIATED ELECTROM	38
AGNETIC FIELD)	
BLOCK DIAGRAM OF TEST SETUP	39
TEST PROCEDURE	39
PERFORMANCE & RESULT	40

DESCRIPTION	PAGE
SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST)	41
BLOCK DIAGRAM OF TEST SETUP	41
TEST PROCEDURE	42
PERFORMANCE & RESULT	42
SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY)	43
BLOCK DIAGRAM OF TEST SETUP	43
TEST PROCEDURE	44
PERFORMANCE & RESULT	44
SECTION 7 IEC 61000-4-6 (CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS)	45
BLOCK DIAGRAM OF TEST SETUP	45
TEST PROCEDURE	46
PERFORMANCE & RESULT	47
SECTION 8 IEC 61000-4-8 (Power Frequency Magnetic Field))	48
BLOCK DIAGRAM OF TEST SETUP	48
TEST PROCEDURE	49
PERFORMANCE & RESULT	49
SECTION 9 IEC 61000-4-11 (VOLTAGE DIP/INTERRUPTION)	50
BLOCK DIAGRAM OF TEST SETUP	50
TEST PROCEDURE	51
PERFORMANCE & RESULT	51
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP EN 55022 TEST EN 61000-3-2 TEST	52
EN 61000-3-3 TEST IEC 61000-4-2 Test IEC 61000-4-3 Test IEC 61000-4-4 TEST	
IEC 61000-4-5 TEST IEC 61000-4-6 TEST IEC 61000-4-11 TEST	
APPENDIX 2 PHOTOGRAPHS OF EUT	62
APPENDIX 3 CONDUCTED EMISSION PLOT & RADIATED	74
EMISSION DATA	

VERIFICATION OF COMPLIANCE

Equipment Under Test: Industrial Display Monitor

Trade Name: N/A

Model Number: OPD-215ABT

Product Family: OPD-215ART; OPD-215AT

Serial Number: N/A

Applicant: AAEON Technology Inc.

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R. O. C.

Manufacturer: AAEON Technology Inc.

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R. O. C.

Type of Test: EMC Directive 89/336/EEC for CE Marking

Technical Standards: EN 55022: 1998

EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000

EN 61000-3-3: 1995 EN 55024: 1998

(IEC 61000-4-2: 1995 +A2: 2000, IEC 61000-4-3: 1995

IEC 61000-4-4: 1995, IEC 61000-4-5: 1995 IEC 61000-4-6: 1996, IEC 61000-4-11: 1994)

File Number: 02E0031-E

Date of test: March 28, 2002 & March 29, 2002

Deviation: N/A **Condition of Test Sample:** Normal

The above equipment was tested by C&C Laboratory Co., Ltd. for compliance with the requirements set forth in EMC Directive 89/336/EEC and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Approved by Authorized Signatory:

For RICK YEO / MANAGEI

GENERAL INFORMATION

AAEON Technology Inc. Applicant:

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R. O. C.

Contact Person: Milo Wang / Q. E. Dept. Engineer

AAEON Technology Inc. Manufacturer:

5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R. O. C.

File Number: 02E0031-E

March 28, 2002 & March 29, 2002 **Date of Test:**

Equipment Under Test: Industrial Display Monitor

Model Number: OPD-215ABT

Product Family: OPD-215ART; OPD-215AT

Serial Number: N/A

Type of Test: EMC Directive 89/336/EEC for CE Marking

EN 55022: 1998 **Technical Standards:**

EN 61000-3-2: 1995+A1: 1998+A2: 1998+A14: 2000

EN 61000-3-3: 1995 EN 55024: 1998

(IEC 61000-4-2: 1995 +A2: 2000, IEC 61000-4-3: 1995

IEC 61000-4-4: 1995, IEC 61000-4-5: 1995 IEC 61000-4-6: 1996, IEC 61000-4-11: 1994)

Frequency Range

150kHz to 30MHz for Line Conducted Test (EN 55022):

30MHz to 1000MHz for Radiated Emission Test

Test Site C&C LABORATORY CO., LTD.

No. 199, Chung Sheng Road, Hsin Tien City, Taipei

Taiwan, R. O. C.

SYSTEM DESCRIPTION

EUT Test Procedure:

- 1. Windows 98 Boots System.
- 2. Run Winemc.Exe To Activate All Peripherals And Display "H" Pattern On Monitor Screen.
- 3. Play Hi-8 to Activate on Monitor.

PRODUCT INFORMATION

Housing Type: Plastic w/ metal plate

EUT Power Rating: DC 12V from AC Adaptor

AC power during Test: 230VAC, 50Hz to AC Adaptor

AC Adaptor Manufacturer: EDAC

AC Adaptor Model Number: EA1050A

AC Power Cord Type: Unshielded, 1.8m (Detachable)

DC Power Cable Type: Shielded, 1.2m (Non-Detachable, with a ferrite core)

EUT I/O Cable (DB 9): Shielded, 1.8m (Detachable)

EUT I/O Cable (DB 15): Shielded, 1.2m (Detachable, with two ferrite cores)

OSC/Clock Frequencies: Y1=24.533MHz; Y2=14.3MHz; Y3=12.0MHz

A/D Board Model: MTC-ZU2

LCD Panel Brand / Model Number: FUJITSU 15" / FLC38XGC6V-06

Model Difference:

Model Name	Differences	Tested (Checked)
OPD-215ABT	Original Model	
OPD-215ART	Additional Model (Case include the Rack)	
OPD-215AT	Additional Model (Without the Case)	

I/O Port of EUT:

I/O PORT TYPES	Q'TY	TESTED WITH
1). Serial Port (DB 9)	1	1
2). VGA Port (DB15)	1	1
3). Video (RCA)	1	1
4). S-Video	1	1

Note: N/A

SUPPORT EQUIPMENT

No	Equipment	Model	Serial	FCC	Trade Name	Data	Power
		#	#	ID		Cable	Cord
1.	PS/2 Keyboard	6311-TA	N/A	DoC	ACER	Shielded, 1.7m	N/A
2.	PS/2 Mouse	M-S34	LZE12352345	DZL211029	LOGITECH	Shielded, 1.9m	N/A
3.	Printer	KX-P1080i	N/A	ACJ5Z6KX-P1080i	PANASONIC	Shielded, 1.7 m	Unshielded, 1.8m
4.	Host PC	CUSI-M	HS-25	DoC	VIVA	DB9: Shielded, 1.8m DB15: Shielded, 1.2m With two cores	Unshielded, 1.8m
5.	V8	SCH985	67CG300364	N/A	SAMSUNG	Unshielded, 1.5m x 2	Unshielded, 1.8m

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

TEST FACILITY

Location: No. 199, Chung Sheng Road, Hsin Tien City,

Taipei, Taiwan, R. O. C.

Description: There are two 3/10m open area test sites and one line conducted lab for

final test.

The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:

1992 and CISPR 22/EN 55022 requirements.

Site Filing: A site description is on file with the Federal Communications

Commission, 7435 Oakland Mills Road, Columbia, MD 21046.

Registration also was made with Voluntary Control Council for

Interference (VCCI).

Site Accreditation: Accredited by A2LA (Certificate #: 824.01) for EMC.

Also accredited by BSMI for the product category of Information

Technology Equipment.

Instrument Tolerance: All measuring equipment is in accord with ANSI C63.4 and CISPR 22

requirements that meet industry regulatory agency and accreditation

agency requirement.

Ground Plane: Two conductive reference ground planes were used during the Line Conducted Emission, one in vertical and the other in horizontal. The dimensions of these ground planes are as below. The vertical ground plane was placed distancing 40 cm to the rear of the wooden test table on where the EUT and the support equipment were placed during test. The horizontal ground plane projected 50 cm beyond the footprint of the EUT system and distanced 80 cm to the wooden test table. For Radiated Emission Test, one horizontal conductive ground plane extended at least 1m beyond the periphery of the EUT and the largest measuring antenna, and covered the entire area between the EUT and the antenna. It has no holes or gaps having longitudinal dimensions larger than one-tenth of a wavelength at the highest frequency of measurement up to 1GHz.

TEST EQUIPMENT LIST (EMISSION)

Instrumentation: The following list contains equipment used at C & C Laboratory, Co., Ltd. for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2-1988 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 9kHz to 1.0 / 2.0 GHz.

Equipment used during the tests:

Open Area Test Site: #E

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL. DUE
SPECTRUM ANALYZER	H.P.	8566B	2937A06102	06/06/01	06/05/02
SPECTRUM DISPLAY	H.P.	85662A	2848A18276	06/06/01	06/05/02
QUASI-PEAK DETECTOR	H.P.	85650A	2811A01439	06/07/01	06/06/02
AMPLIFIER	H.P.	8447D B	1644A02328	05/07/01	05/06/02
ANTENNA	EMCO	3142	1310	06/30/01	06/29/02
CABLE	BELDEN	9913	N-TYPE07	01/02/02	01/01/03

Conducted Emission Test Site: Conducted Room

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL. DUE
TEST RECEIVER	R&S	ESHS20	840455/006	03/16/02	03/15/03
LISN	SOLAR	8012-50-R-24-BNC	8305114	07/23/01	07/22/02
LISN(EUT)	EMCO	3825/2	1435	01/16/02	01/15/03

The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

TEST EQUIPMENT LIST

For Power Harmonic & Voltage Fluctuation/Flicker Measurement:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
HP / Harmonic & Flicker Tester	6842A	3531A-000142	06/15/2001	06/14/2002

For ESD test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
Schaffner / ESD Simulator	NSG 432	2029	02/06/2002	02/05/2003

For Radiated Electromagnetic Field immunity Measurement:

		- V		
Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
R&S / Signal Generator	SMY 02	DE13751	01/10/2002	01/09/2003
IFI /	EFS-5	713-0695	06/29/2001	06/28/2002
"E" Field sensor/ Light				
Modulator Transmitter				
IFI / Combination Amplifier	SMX100	2067-1196	06/28/2001	06/27/2002
IFI / Leveling Pre-Amplifier	LPA-5B	714-0695	05/01/2001	04/30/2002
EMCO / Biconilog Antenna	3142	9609-1087	No Calibration	No Calibration
_			Required	Required

For Fast Transients/Burst test:

1 01 1 db 0 11 ddibiolios, D dibo 0 bb 0							
Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due			
KeyTek Instruments /	E421	9502326	11/01/2001	10/31/2002			
EFT Generator							
KeyTek Instruments /	CCL-4	9503290	No Calibration	No Calibration			
Capacitive Clamp			Required	Required			
HAEFELY TRENCH /							
Fast Transients/Burst	PEFT- JUNIOR	583 333-117	08/21/2001	08/20/2002			
Generator							
HAEFELY TRENCH /	093 506.1	080 421.13	N/A	N/A			
Clamp	093 300.1	000 421.13	IN/A	IN/A			

For Surge Immunity test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
Surger Generator	E501	9502324	11/01/2001	10/31/2002
KeyTek Instruments				
Telecom Lines Coupler DECOUPLER	CM-TELCD	0104399	05/01/2001	04/30/2002
KeyTek Instruments				
I/O Signal Line DECOUPLER KeyTek Instruments	CM-I/OCD	0103234	05/01/2001	04/30/2002
HAEFELY TRENCH /				
Surge Tester	PSUGER 4010	583 334-71	09/01/2001	08/31/2002

For CS test:

Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
R&S / Signal Generator	SMY 02	DE13751	01/10/2002	01/09/2003
IFI / Combination Amplifier	SMX100	2067-1196	06/28/2001	06/27/2002
IFI / Leveling Pre-Amplifier	LPA-5B	714-0695	05/01/2001	04/30/2002
FISCHER /	FCC-801-M3-16A	99122	10/27/2001	10/26/2002
Power Line Coupling				
Decoupling Network				
FISCHER /	F-120-9B	54	10/30/2001	10/29/2002
Bulk Current Injection Probe				
Narda /	769-6	02541	10/26/2001	10/25/2002
High Power Attenuator				

For Power Frequency Magnetic Field test:

or rower riedenanch riemenance rieses and							
Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due			
Haefely /	MAG 100.1	081436-02	No Calibration	No Calibration			
Magic Field Tester			Required	Required			
Extech Electronics /	cs / CFC-105 810390		No Calibration	No Calibration			
Frequency Converter			Required	Required			
CHY/	932C	2K0900285	10/25/2001	10/24/2002			
AC/DC Clamp Meter							

For Voltage Dips/Short Interruption and Voltage Variation Immunity test:

			<u> </u>	
Manufacturer/Type	Model No.	Serial No.	Last Cal.	Cal. Due
Haefely /	PLINE 1610	081568-06	08/06/2001	08/05/2002
Dips/Inerruption/Variations				
Tester				
FLUKE /	79-II	66400868	07/03/2001	07/02/2002
79 Series Ii Multimeter				

SECTION 1 EN 55022 (LINE CONDUCTED & RADIATED EMISSION)

MEASUREMENT PROCEDURE (PRELIMINARY LINE CONDUCTED EMISSION TEST)

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per EN 55022.
- 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022.
- 4) The EUT received DC 12V power through AC Adaptor and Line Impedance Stabilization Network (LISN) which supplied power source of 230VAC/ 50Hz and was grounded to the ground plane.
- 5) All support equipment received power from a second LISN supplying power of 110VAC/60Hz, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode were scanned during the preliminary test:

Mode(s):

No.	Mode of operation	Date	Data Report/Plot No.
1	1024X768	03/29/2002	0031C#(08, 16) 0031C#(65, 66)
2	800X600	03/29/2002	0031C#(24)
3	640X480	03/29/2002	0031C#(32)
4	RCA	03/29/2002	0031C#(40)
5	S-VIDEO	03/29/2002	0031C#(48)

10) After the preliminary scan, we found the following test mode producing the highest emission level.

Mode: 1. (Test Data: 0031C# 65, 66; Test Date: 03/29/2002)

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

MEASUREMENT PROCEDURE (FINAL LINE CONDUCTED EMISSION TEST)

- 1) EUT and support equipment was set up on the test bench as per step 10 of the preliminary test.
- 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Q.P. mode, then the emission signal was re-checked using an A.V. detector.
- 3) The test data of the worst case condition(s) was reported on the Summary Data page.

Data Sample:

Freq	Meter Reading	C.F.	Corrected Reading	Limits	Margin	Reading Type	Line
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
X.XX	X.XX	X.XX	48.38	66.00	-17.62	A	L1

C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits

P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral

A=Average Reading

Comments: N/A

LINE CONDUCTED EMISSION LIMIT (EN 55022)

Frequency	Maximum RF Line Voltage			
	Q.P.	AVERAGE		
150kHz-500kHz	79dBuV	66dBuV		
500kHz-5MHz	73dBuV	60dBuV		
5MHz-30MHz	73dBuV	60dBuV		

Note: The lower limit shall apply at the transition frequency.

MEASUREMENT PROCEDURE (COMMON MODE CONDUCTED EMISSION MEASUREMENT)

- 1) Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.
- 2) The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.
- 3) Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.
- 4) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- 5) In case of measuring on the screened cable, the current limit shall be applied, otherwise the voltage limit should be applied.
- 6) The following test mode(s) were scanned during the preliminary test: Mode: N/A (EUT no any Telecommunicate Port)
- 7) After the preliminary scan, we found the following test mode(s) producing the highest emission level and test date of the worst case was reported on the summary data page.

 Mode: N/A

Data Sample:

Freq	Meter Reading	C.F.	Corrected Reading	Limits	Margin	Reading Type
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q/A)
X.XX	X.XX	X.XX	59.26	74.00	-14.74	P

C.F.(Correction Factor)=Insertion Loss (9.5dB) + Cable Loss

Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

P=Peak Reading Q=Quasi-peak A=Average Reading

Comments: N/A

COMMON MODE CONDUCTED EMISSION LIMIT AT TELECOMMUNICATION PORTS

CE-Mark (EN 55022:1998)								
CLASS	Measuring Voltage limit dB(uV) Current limit dB(uA							
	Band	Q.P.	AV	Q.P.	AV			
D	150kHz-500kHz	84-74	74-64	40-30	30-20			
В	500kHz-30MHz	74	64	30	20			

Note: The lower limit shall apply at the transition frequency.

MEASUREMENT PROCEDURE (PRELIMINARY RADIATED EMISSION TEST)

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per EN 55022.
- 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022.
- 4) The EUT received DC 12V power source from AC Adaptor (AC 230V/50Hz) to the outlet socket under the turntable. All support equipment received 110VAC/60Hz power from another socket under the turntable, if any.
- 5) The antenna was placed at 10 meter away from the EUT as stated in EN 55022. The antenna connected to the analyzer via a cable and at times a pre-amplifier would be used.
- 6) The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7) The following test mode were scanned during the preliminary test:

Mode(s):

No.	Mode of operation	Date	Data Report/Plot No.
1	1024X768	03/28/2002	0031B#(02, 04, 06, 08)
2	800X600	03/28/2002 03/29/2002	0031B#(10, 12, 14, 16) 0031E#(02, 03)
3	640X480	03/28/2002	0031B#(18, 20, 22, 24)
4	RCA	03/28/2002	0031B#(34, 36, 28, 40)
5	S-VIDEO	03/28/2002	0031B#(26, 28, 30, 32)

8) After the preliminary scan, we found the following test mode producing the highest emission level.

Mode: 2. (Test Data: 0031E# 02, 03; Test Date: 03/29/2002)

Then, the EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for final testing.

MEASUREMENT PROCEDURE (FINAL RADIATED EMISSION TEST)

- 1) EUT and support equipment were set up on the turntable as per step 8 of the preliminary test.
- 2) The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 3) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Peak reading is presented. If EUT emission level was less-2dB to the limit, then the emission signal was re-checked using a Q.P. detector.
- 4) The test data of the worst case condition(s) was reported on the Summary Data page.

Data Sample:

	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Type	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	P/Q/A	H/V
X.XX	X.XX	X.XX	40.82	47.00	-6.18	P	V

$$\label{eq:correction} \begin{split} &\text{C.F.}(\text{Correction Factor}) = \text{Antenna Factor} + \text{Cable Loss} + \text{Attenuator}(6\text{dB}) - \text{Amplifier Gain Corrected Reading} = \text{Metering Reading} + \text{C.F.} \\ &\text{Margin=Corrected Reading} - \text{Limits} \end{split}$$

P=Peak Reading H=Horizontal Polarization/Antenna Q=Quasi-peak V=Vertical Polarization/Antenna

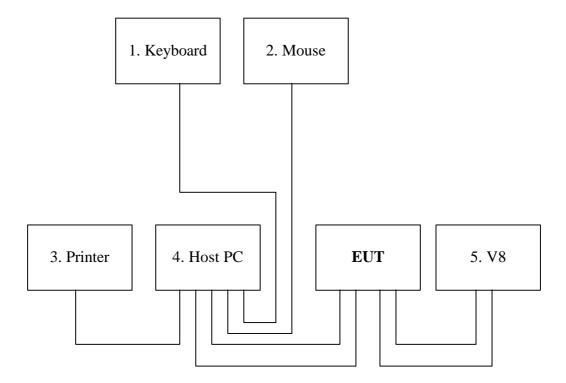
A=Average Reading

Comments: N/A

RADIATED EMISSION LIMIT

Frequency (MHz)	Distance (m)	Maximum Field Strength Limit (dBu V/m/ Q.P.)
30-230	10	40
230-1000	10	47

Note: The lower limit shall apply at the transition frequency.


BLOCK DIAGRAM OF TEST SETUP

System Diagram of Connections between EUT and Simulators

EUT: Industrial Display Monitor

Trade Name: N/A

Model Number: OPD-215ABT

SUMMARY DATA (LINE CONDUCTED TEST)

Model Number: OPD-215ABT Location: Conducted Room

Tested by: Cliff Lai

Test Mode: Mode 1

Test Results: Passed

Temperature: 22 Humidity: 83%RH

(The chart below shows the highest readings taken from the final data)

Frequency	Range Inves	tigated			150 kHz T0	O 30 MHz	
	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Type	Line
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
1.689	46.83	0.12	46.95	73.00	-26.05	P	L1
2.088	49.22	0.14	49.35	73.00	-23.65	P	L1
2.474	52.51	0.16	52.67	73.00	-20.33	P	L1
1.689	46.23	0.12	46.35	73.00	-26.65	P	L2
2.088	48.42	0.14	48.55	73.00	-24.45	P	L2
2.409	53.43	0.15	53.58	73.00	-19.42	P	L2

C.F.(Correction Factor)=Insertion Loss + Cable Loss

Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral

A=Average Reading

Comments: N/A

SUMMARY DATA (RADIATED EMISSION TEST)

Model Number: OPD-215ABT **Location:** Site # E

Tested by: Cliff Lai **Polar:** Vertical / Horizontal— 10m

Test Mode: Mode 2

Test Results: Passed

Temperature: 22 **Humidity:** 83%RH

(The chart below shows the highest readings taken from the final data)

Frequency Range Investigated (30 MHz TO 1000 MHz)								
	Meter		Corrected			Reading		
Freq	Reading	C.F.	Reading	Limits	Margin	Type	Pol.	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	P/Q/A	H/V	
222.034	47.90	-10.14	37.76	40.00	-2.24	Q	V	
281.490	47.80	-7.46	40.34	47.00	-6.66	P	V	
295.910	47.20	-7.24	39.96	47.00	-7.04	P	V	
443.910	44.40	-3.88	40.52	47.00	-6.48	P	V	
554.910	42.00	-1.69	40.31	47.00	-6.69	P	V	
151.880	50.60	-14.50	36.10	40.00	-3.90	P	Н	

C.F.(Correction Factor)=Antenna Factor + Cable Loss - Amplifier Gain (+ Attenuator 3dB)

Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

P=Peak Reading H=Horizontal Polarization/Antenna
Q=Quasi-peak V=Vertical Polarization/Antenna

A=Average Reading

Comments: N/A

SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION / FLICKER)

POWER HARMONICS MEASUREMENT

Port : AC mains

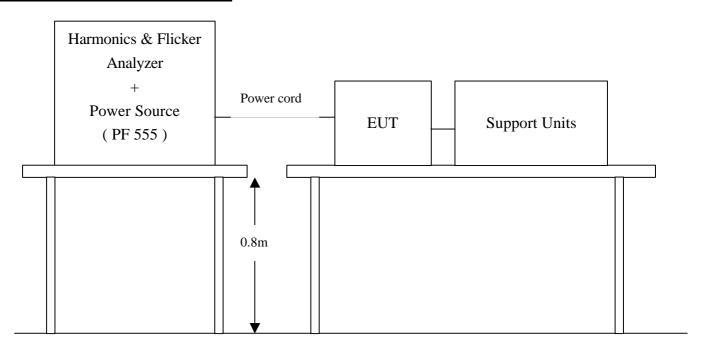
Basic Standard : EN 61000-3-2 (1995+A1: 1998+A2: 1998 + A14: 2000)

Limits : Class A, V Class D

Temperature : 20^{0} C **Humidity** : 70%

Test By : David Hung

VOLTAGE FLUCTUATION/FLICKER MEASUREMENT


Port : AC mains

Basic Standard : EN 61000-3-3 (1995) **Limits** : § 5 of EN 61000-3-3

Temperature : 20°C **Humidity** : 70%

Test By : Stanley Huang

Block Diagram of Test Setup:

Result:

Please see the attached test data.

Signature:

Final Test Result: PASS

Settings and Test Conditions Compliant to the Standard: Yes

Test Equipment Used:

Agilent 6842A Harmonic/Flicker Test System with serial number: HFTS Software Version: A.05.03 Date Last Calibrated:

Test Equipment Settings:

Line Voltage: 230.00 V Line Frequency: 50 Hz Device Class: D

Measurement Window Type: Rectangular Measurement Delay: 10 seconds Quasi-stationary Test Duration: 30.00 minutes

RMS Current Limit: 13.1 A Peak Current Limit: 80.8 A Number of Records: 5625

Class Determination Pre-test Duration: 10.00 seconds

Power Factor: 0.408

Current Measurement Range: High

Overrides:

Test Limit Source (Power Measurements/Statistics): Maximum Power Overrides: None

Test Limit Overrides: None

Pre-test Results for Class Determination:

Percent in Envelope: 100.0% Voltage THD Out-of-Specification?: No Class D Equipment?: Yes Fundamental Current: 0.136 A

RMS Current: 0.3 A Peak Current: 1.5 A RMS Voltage: 229.8 V Real Power: 30.0 W Frequency: 50.0 Hz Apparent Power: 73.6 VA

Voltage THD: 0.03% Current THD: 90.41% Maximum Power: 30.0 W Mean Power: 29.9 W

Active Power Statistics:

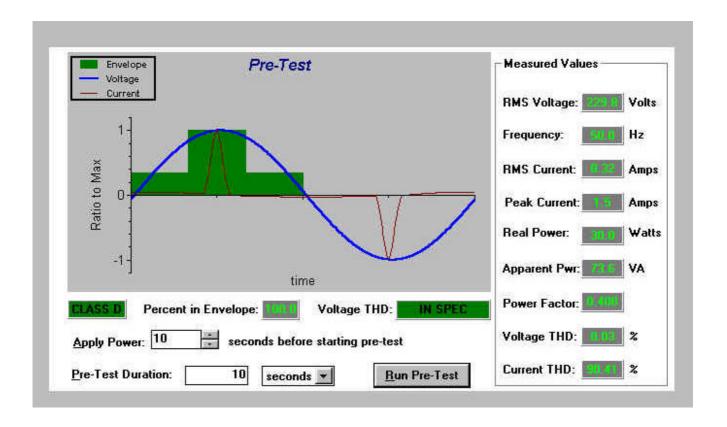
100th Percentile: 30.0 W 95th Percentile: 30.0

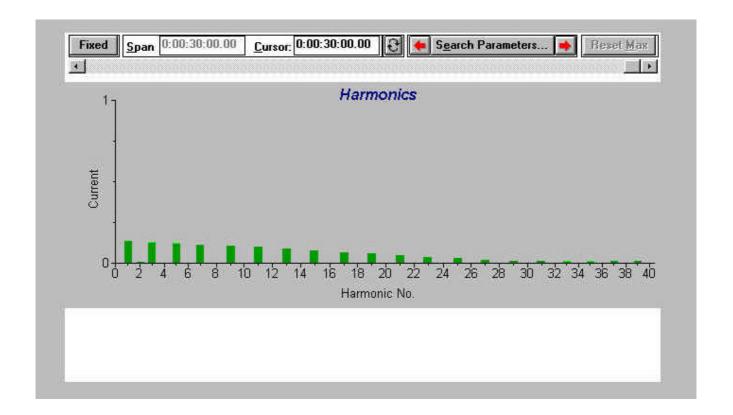
99th Percentile: 30.0 W 50th Percentile: 30.0 W 90th Percentile: 30.0 W

Total Number of Failures: Total Number of Errors:

None None

Harmonic Number	Limit	Limit (Volts)	Max (%)	Max (Volts)
Fund.			100.0	229.855
2	0.20	0.460	0.006	0.014
3	0.90	2.069	0.006	0.014
4	0.20	0.460	0.004	0.010
5	0.40	0.919	0.010	0.022
6	0.20	0.460	0.003	0.006
7	0.30	0.690	0.006	0.014
8	0.20	0.460	0.001	0.003
9	0.20	0.460	0.010	0.023
10	0.20	0.460	0.003	0.008
11	0.10	0.230	0.009	0.021
-12	0.10	0.230	0.003	0.007
13	0.10	0.230	0.010	0.022
14	0.10	0.230	0.001	0.003
15	0.10	0.230	0.007	0.016
16	0.10	0.230	0.002	0.004
17	0.10	0.230	0.011	0.026
18	0.10	0.230	0.003	0.006
19	0.10	0.230	0.010	0.022
20	0.10	0.230	0.002	0.005
21	0.10	0.230	0.010	0.022
22	0.10	0.230	0.004	0.009
23	0.10	0.230	0.007	0.015
24	0.10	0.230	0.002	0.005
25	0.10	0.230	0.005	0.011
26	0.10	0.230	0.001	0.003
27	0.10	0.230	0.003	0.006
28	0.10	0.230	0.001	0.002
29	0.10	0.230	0.005	0.011
30	0.10	0.230	0.001	0.003
31	0.10	0.230	0.002	0.004
32	0.10	0.230	0.001	0.002
33	0.10	0.230	. 0.001	0.003
34	0.10	0.230	0.001	0.002
35	0.10	0.230	0.003	0.008
36	0.10	0.230	0.001	0.003
37	0.10	0.230	0.004	0.009
38	0.10	0.230	0.002	0.004
39	0.10	0.230	0.005	0.011
40	0.10	0.230	0.001	0.001


Final Test Data:


Harmonic Number	Standard Limit (A rms)	Maximum Value (A rms)	Maximum Value (% Limit)	Mean Value (A rms)	Mean Value (% Limit)	(A rms)	Standard Deviation (% Limit)	Pass or Fail	(P) (P)
Fund.		0.1358		0.1331		0.0011			
2		0.0039		0.0033		0.0002			
3	2.3000	0.1258	5.5	0.1232	5.4	0.0010	0.0	P	
4		0.0020		0.0016		0.0001			
5	1.1400	0.1199	10.5	0.1178	10.3	0.0008	0.1	P	
		0.0012		0.0008		0.0001			
7	0.7700	0.1129	14.7	0.1115	14.5	0.0005	0.1	P	
8		0.0012		0.0007		0.0001			
9	0.4000	0.1050	26.2	0.1044	26.1	0.0001	0.0	P	
10		0.0012		0.0007		0.0002			
11	0.3300	0.0968	29.3	0.0960	29.1	0.0004	0.1	P	
12		0.0010		0.0004		0.0002			
13	0.2100	0.0874	41.6	0.0861	41.0	0.0008	0.4	P	
14		0.0009		0.0003		0.0002			
15	0.1500	0.0772	51.5	0.0753	50.2	0.0012	0.8	P	
16		0.0009	0.048	0.0004	1270000	0.0002	17.50		
17	0.1324	0.0667	50.4	0.0643	48.6	0.0015	1.2	P	
18		0.0009		0.0004		0.0002	277.7-25	1.83	
19	0,1184	0.0563	47.5	0.0535	45.2	0.0018	1.6	P	
20		0.0008		0.0003		0.0002			
21	0.1071	0.0461	43.0	0.0431	40.2	0.0021	1.9	P	
22		0.0007		0.0003		0.0001	2.00	-	
23	0.0978	0.0364	37.2	0.0333	34.0	0.0021	2.2	P	
24	3.4.9.5.1.30	0.0006	9.7.3.4	0.0003		0.0001	36.4.6		
25	0.0900	0.0277	30.8	0.0246	27.3	0.0021	2.3	P	
26		0.0007	00.10	0.0003	1.00	0.0001	4.5		
27	0.0833	0.0201	24.1	0.0173	20.8	0.0018	2.2	P	
28	******	0.0006	100000	0.0003	****	0.0001	0.7.0		
29	0.0776	0.0140	18.1	0.0119	15.4	0.0013	1.7	P	
30	0.0	0.0007		0.0003	10.4	0.0002	***		
31	0.0726	0.0099	13.7	0.0090	12.4	0.0004	0.6	P	
32	0.0120	0.0007	40	0.0003	10.7	0.0002	0.0		
33	0.0682	0.0095	13.9	0.0084	12.3	0.0002	0.5	P	
34	0.0002	0.0008	13.3	0.0003	12.3	0.0002	0.5	E	
35	0.0643	0.0104	16.2	0.0003	14.0	0.0002	0.9	P	
36	4.0043	0.0007	10.0	0.0003	14.0	0.0002	0.9	P	
37	0.0608	0.0107	17.6	0.0003	15.8	0.0002	0.8	P	
38	0.0000	0.0008	17.0	0.0003	10.0		0+6	F	
39	0.0577		10 0		10.0	0.0002	0.5		
	0.0577	0.0105	18.2	0.0098	16.9	0.0003	0.5	P	
40		0.0007		0.0003		0.0001			

Final Test Statistics:

Harmonic Number	Standard Limit (A rms)	Maximum Value (A rms)	A Committee of the Comm	>50% of Limit (Count)	>75% of Limit (Count)	(Count)	(Count)	(Count)	Pass(P) or Fail(P)
Fund.	*****	0.1358		********				********	
2		0.0039		0	0	0	0	0	
3	2,3000	0.1258	5.5	0	o o	0	o	0	P
4		0.0020		0	0	0	o.	0	
5	1.1400	0.1199	10.5	0	0	0	ō	0	P
6		0.0012		0	0	0	0	0	1
7	0.7700	0.1129	14.7	o o	0	0	ŏ	0	P
8		0.0012		ō	ő	0	0	0	E
9	0.4000	0.1050	26.2	o o	0	0	0	0	TO.
10	2	0.0012	40.0	0	0	0	o o	0	P
11	0.3300	0.0968	29.3	o o	0	0	0	ő	P
12		0.0010	600	0	0	0	0	0	P
13	0.2100	0.0874	41.6	0	0	0	0	0	
14	0.2100	0.0009	41.0	0	0	0	0	0	P
15	0.1500 -	0.0772	51.5	3582	0	0	0		100
16	0.1500	0.0009	31.5	3582	0	0.00		0	P
17	0.7224		E0 4	-		0	o	0	0.20
18	0.1324	0.0667	50.4	456	0	0	0	0	P
19	0.1104	0.0009	470.00	0	0	0	0	0	
	0.1184	0.0563	47.5	0	0	0	0	0	P
20	0.000	0.0008		0	0	0	0	0	
21	0.1071	0.0461	43.0	0	0	0	0	0	P
22	0 0223	0.0007	25.	0	0	0	0	0	
23	0.0978	0.0364	37.2	0	0	0	0	0	P
24	21.2222	0.0006	824.12	0	0	0	0	0	
25	0.0900	0.0277	30.8	0	0	0	0	0	P
26	000002000	0.0007		0	0	0	0	0	
27	0.0833	0.0201	24.1	0	0	0	0	0	P
28		0.000€		0	0	0	0	0	
29	0.0776	0.0140	18.1	0	0	0	0	0	F1
30		0.0007		0	0	0	0	0	
31	0.0726	0.0099	13.7	0	0	0	0	0	P
32		0.0007		0	0	0	0	0	
33	0.0682	0.0095	13.9	0	0	0	0	0	P
34		0.0008		0	0	0	0	0	10703
35	0.0643	0.0104	16.2	0	0	0	0	0	P
36		0.0007		0	0	0	0	0	
37	0.0608	0.0107	17.6	0	0	0	o	0	P
38		0.0008		0	0	0	o	0	
39	0.0577	0.0105	18.2	0	o o	o	o	0	F
40	V2-11-70-5 10 CV	0.0007		0	o	0	o	0	

Remarks

Approved by:

signature: Stan ey

Date: 3012, 3, 29

Final Test Result: PASS

Settings and Test Conditions Compliant to the Standard: Yes

Test Equipment Used:

Agilent 6842A Harmonic/Flicker Test System with serial number: HPTS Software Version: A.05.03 Date Last Calibrated:

Date hast calibrated.

Test Equipment Settings: Line Voltage: 230.00 V

Line Prequency: 50 Hz Measurement Delay: 10.0 seconds RMS Current Limit: 13.1 A Pst Integration Time: 10 minutes Pst Integration Periods: 3

Test Duration: 00:30:00 Peak Current Limit: 80.8 A

Overrides:

Pst/Flt Test Limit Overrides: None RMS Test Limit Overrides: None

Equipment Under Test Pre-test Results:

RMS Voltage: 229.8 V Frequency: 50.0 Hz Voltage THD: 0.03% RMS Current: 0.3 A Peak Current: 1.6 A Real Power: 28.8 W Apparent Power: 74.0 VA Power Factor: 0.389

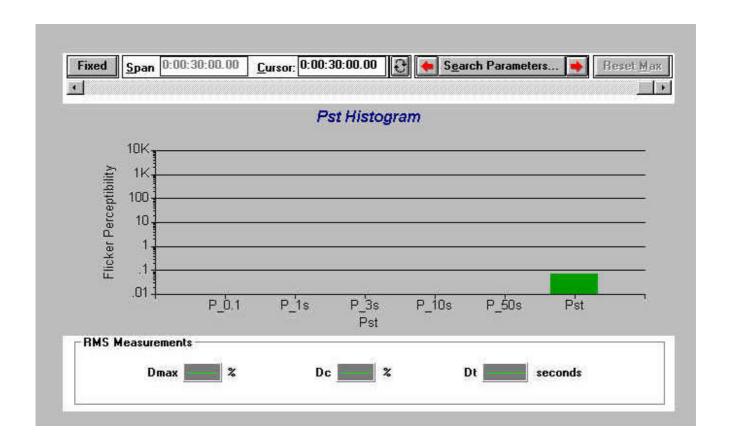
Voltage THD: 0.03% Current THD: 91.22% Power Factor: 0.38

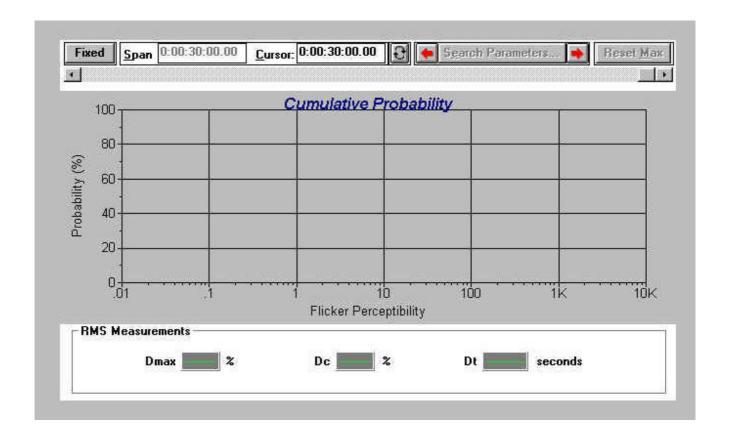
Total Number of Failures:

Total Number of Errors:

Pst: 0 Plt: 0 Dc: 0 Dmax: 0 Dt: 0 None

Final Test Summary:


Dmax: 0.0 Pst: 0.07 P_0.1: 0.01 Dc: 0.0 Plt: 0.07 P_1s: 0.01 Dt: 0.00 Plt Threshold: 0.65 P_3s: 0.01 P_10s: 0.01 P_50s: 0.01


Final Test Data by Integration Period:

Number of Integration Periods: 3

Integration Periods	on Pst (P.U.)	P_0.1 (P.U.)	P_1.0s (P.U.)	P_3.0s (P.U.)	P_10s (P.U.)	P_50s (P.U.)	Dc (%)	Dmax	(Dt (seconds)	Pass(P) or Fail(F)
1	0.07	0.01	0.01	0.01	0.01	0.01				N/A
2	0.07	0.01	0.01	0.01	0.01	0.01				N/A
3	0.07	0.01	0.01	0.01	0.01	0.01				N/A

Remarks

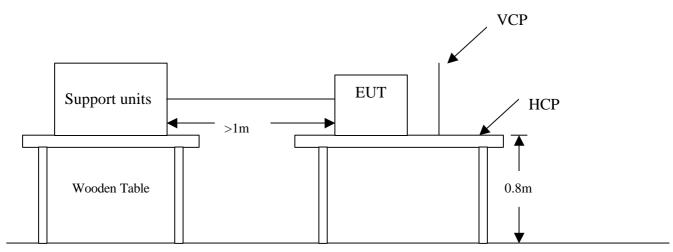
SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE)

ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port : Enclosure

Basic Standard: IEC 61000-4-2

Requirements : ±8 kV (Air Discharge)


±4kV (Contact Discharge)

±4kV (Indirect Discharge)

Performance Criteria: B (Standard require)

Temperature/Humidity: 16^oC /58% **Test By** : Stanley Hunag

Block Diagram of Test Setup:

Ground Reference Plane

Test Procedure:

- 1. The EUT was located 0.1 m minimum from all side of the HCP.
- 2. The support units were located 1 m minimum away from the EUT.
- 3. A communication test program was loaded and executed in Windows mode.
- 4. PC sent transmit data to remote side via EUT.
- 5. As per the requirement of EN 55024; applying direct contact discharge at the sides other than front of EUT at minimum 50 discharges (25 positive and 25 negative) if applicable, can't be applied direct contact discharge side of EUT then the indirect discharge shall be applied. One of the test points shall be subjected to at least 50 indirect discharge (contact) to the front edge of horizontal coupling plane.
- 6. Other parts of EUT where it is not possible to perform contact discharge then selecting appropriate points of EUT for air discharge, a minimum of 10 single air discharges shall be applied.
- 7. The application of ESD to the contact of open connectors is not required.
- 8. Putting a mark on EUT to show tested points. The following test condition was followed during the tests.

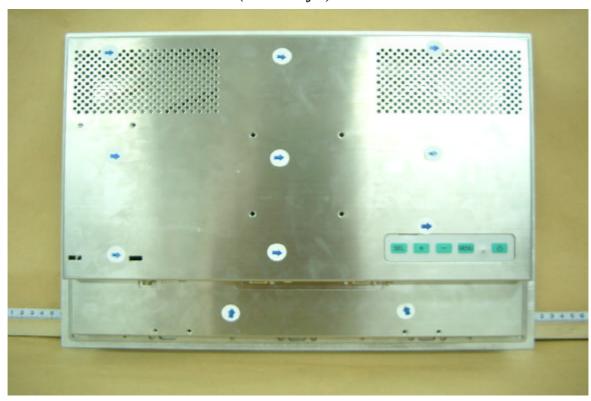
The electrostatic discharges were applied as follows:

The creek obtained displacing the deprice as follows:							
Amount of	Voltage	Coupling	Result (Pass/Fail)				
Discharges							
Mini 25 /Point	±4kV	Contact Discharge	Pass				
Mini 25 /Point	±4kV	Indirect Discharge HCP (Front)	Pass				
Mini 25 /Point	±4kV	Indirect Discharge VCP (Back)	Pass				
Mini 25 /Point	±4kV	Indirect Discharge VCP (Left)	Pass				
Mini 25 /Point	±4kV	Indirect Discharge VCP (Right)	Pass				
Mini 10 /Point	±8kV	Air Discharge	Pass				

^{**} The tested points to EUT, please refer to attached page.

(Blue arrow mark for contact discharge, red arrow mark for air discharge.)

Performance & Result:


V Criteria A:	The apparatus continues to operate as intended. No degradation of performance or
	loss of function is allowed below a performance level specified by the manufacturer
	when the apparatus is used as intended. In some cases the performance level may
	be replaced by a permissible loss of performance.
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by
	the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.
	V PASS FAILED
Observa	tion: No any function degraded during the tests.

The Tested Points of EUT

(Photo 1 of 6)

(Photo 2 of 6)

(Photo 3 of 6)

(Photo 4 of 6)

(**Photo** 5 of 6)

(**Photo6 of 6**)

SECTION 4 IEC 61000-4-3 (RADIATED ELECTROMAGNETIC FIELD)

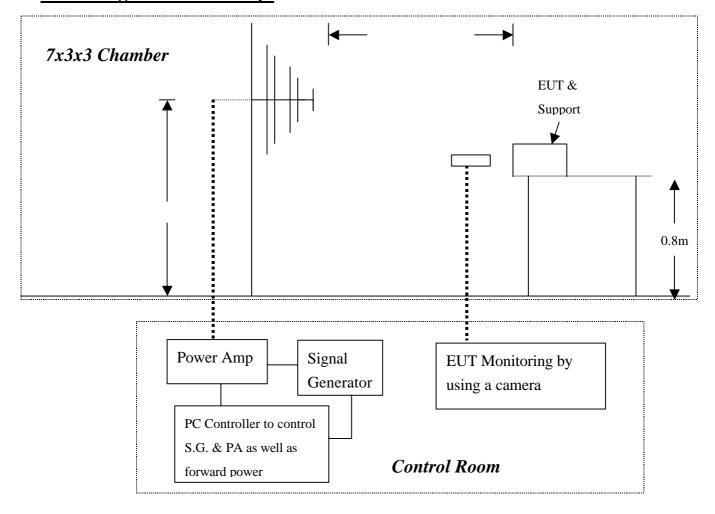
RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

Basic Standard: IEC 61000-4-3

Requirements : 3 V/m / with 80% AM. 1kHz Modulation

Performance Criteria: A (Standard require)


Tester : Stanley Huang

Temperature : 18 **Humidity** : 68%

Note : The EUT not have acoustic interfaces, the annex A of EN 55024

should not be applied.

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity.
- 2. Adjusting the cables to be exposed to the electromagnetic filed as possible.
- 3. Performing a Radiated Emission Scan in range of 30 to 1000 MHz prior to do RS test and records the more higher emission frequencies for the reference of RS test, due to antenna effectiveness.
- 4. Adjusting the monitoring camera to monitor the "H" message as clear as possible.
- 5. Setting the testing parameters of RS test software per IEC 61000-4-3.
- 6. Referring to the tested data of step 3 to performing the RS test from 80 to 1000 MHz.
- 7. Recording the test result in following table.
- 8. Changing the EUT to the other side and repeat step 3 to 6, until 4 sides of EUT were verified.

IEC 61000-4-3 Final test conditions:

Test level : 3V/m

Steps : 1 % of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Polarity	Position (°)	Result (Pass/Fail)
80-1000	3V	Yes	Н	Front	Pass
80-1000	3V	Yes	V	Front	Pass
80-1000	3V	Yes	Н	Right	Pass
80-1000	3V	Yes	V	Right	Pass
80-1000	3V	Yes	Н	Back	Pass
80-1000	3V	Yes	V	Back	Pass
80-1000	3V	Yes	Н	Left	Pass
80-1000	3V	Yes	V	Left	Pass

Performance & Result:

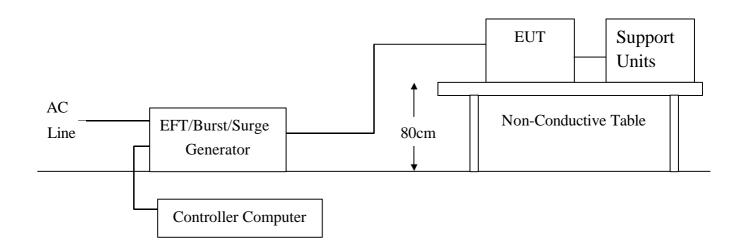
V Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.			
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.			
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.			
	V PASS FAILED			
Observa	tion: No any function degraded during the tests.			

SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST)

FAST TRANSIENTS/BURST IMMUNITY TEST

Port : On Power Lines

Basic Standard : IEC 61000-4-4


Requirements : ±1kV for Power Supply Lines

Performance Criteria: B (Standard require)

Temperature : 18⁰C **Humidity** : 68%

Test By : Stanley Huang

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table 0.8 m away from ground reference
- 2. A 1.0 meter long power cord was attached to EUT during the test.
- 3. The length of communication cable between communication port and clamp was keeping within 1
- 4. A test program was loaded and executed in Windows mode.
- 5. The data was display on the monitor and filling the screens.
- 6. The test program exercised related support units sequentially.
- 7. Repeating step 3 to 6 through the test.
- 8. Recording the test result as shown in following table.

Test conditions:

Impulse Frequency: 5kHz

Tr/Th: 5/50ns

Burst Duration: 15ms Burst Period: 300mS

ist i circu. Sooms				
Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)	
L1	+/- 1	Direct	Pass	
N	+/- 1	Direct	Pass	
PE	+/- 1	Direct	Pass	
L1+N	+/- 1	Direct	Pass	
L1+PE	+/- 1	Direct	Pass	
N+PE	+/- 1	Direct	Pass	
L1+N+PE	+/- 1	Direct	Pass	

Performance & Result: Criteria A: The apparatus continues to operate as intended. No degradation of performance or

loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.

Criteria B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During

le or

Criteria C:	the test, degradation of performance Temporary loss of function is all can be restored by the operation of	owed, provided the functions self recoverab
	V PASS	FAILED
Observat	ion: No any function d	egraded during the tests.

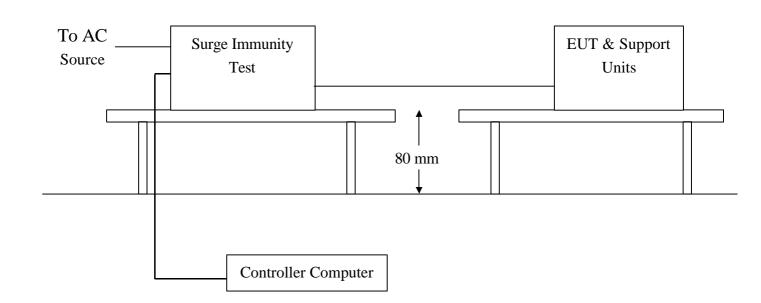
SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY)

SURGE IMMUNITY TEST

Port : Power Cord

Basic Standard : IEC 61000-4-5

Requirements : +/- 1kV (Line to Line of Power Port)


+/- 2kV (Line to Earth of Power Port)

Performance Criteria: B (Standard require)

Temperature : 18 Humidity : 68%

Test By : Stanley Huang

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table 0.8 m away from ground floor.
- 2. A test program was loaded and executed in Windows mode.
- 3. The data was display on the monitor and filling the screens.
- 4. The test program exercised related support units sequentially.
- 5. Repeating step 3 to 4 through the test.
- 6. Recording the test result as shown in following table.

Test conditions:

Voltage Waveform : 1.2/50 us Current Waveform : 8/20 us

Polarity : Positive/Negative Phase angle : 0°, 90°, 270°

Number of Test : 5

Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2、L1-PE、L2-PE	1	Positive	Capacitive	Pass
L1-L2, L1-PE, L2-PE	1	Negative	Capacitive	Pass
L1-PE、L2-PE	2	Positive	Capacitive	Pass
L1-PE、L2-PE	2	Negative	Capacitive	Pass

Performance & Result:

V Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.
	V PASS FAILED
Observati	ion: No any function degraded during the tests.

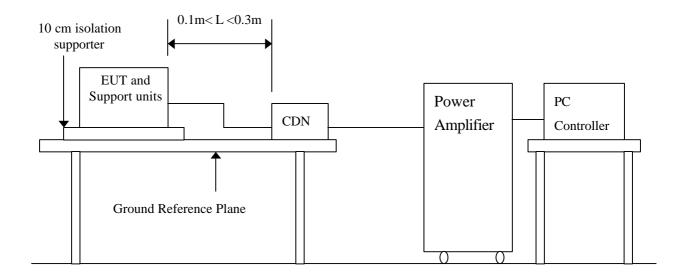
SECTION 7 IEC 61000-4-6 (CONDUCTED DISTRBANCE/INDUCED BY RADIO-FREQUENCY FIELD)

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS

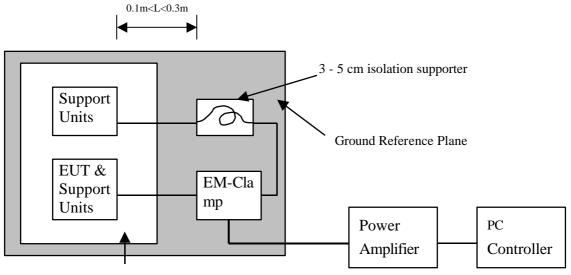
Port : AC Port

Basic Standard: IEC 61000-4-6

Requirements : 3V with 80% AM. Modulation


Injection Method : CDN-M2

Performance Criteria: A (Standard require)


Temperature : 18°C
Humidity : 68%
Test By : Stanley

Block Diagram of Test Setup:

Side view:

Top view:

10 cm isolation supporter

Test Procedure:

- 1. The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- 2. Transmit data messages were displayed on screen of Monitor.
- 3. Adjusting the monitoring camera to monitor the transmit data message as clear as possible.
- 4. Setting the testing parameters of CS test software per EN 61000-4-6.
- 5. Recording the test result in following table.

Test conditions:

Frequency Range : 0.15MHz-80MHz
Frequency Step : 1% of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	3V	Yes	Pass

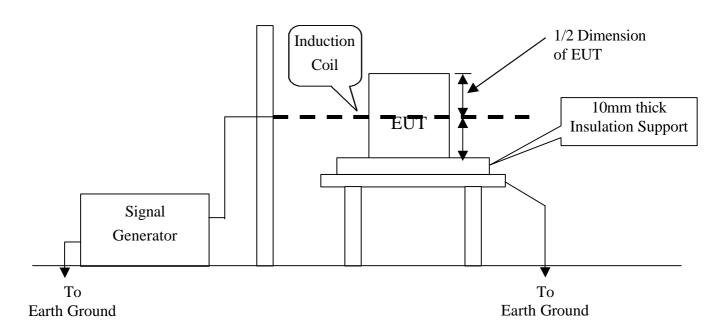
Performance & Result:

V Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls.
	V PASS FAILED
Observat	tion: No any function degraded during the tests.

SECTION 8 IEC 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST)

POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port : Enclosure


Basic Standard: IEC 61000-4-8

Requirements : 1 A/m

Performance Criteria : A (Standard Required)

Temperature : N/A
Humidity : N/A
Test By : N/A

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on Ground Reference Plane with the interposition of a 0.1 m thickness insulation support.
- 2. Putting the induction coil on horizontal direction.(X direction)
- 3. A test program was loaded and executed in Windows mode.
- 4. The data was sent to the screen of EUT and filling the screen with upper case of "H" patterns.
- 5. The test program exercised related support units sequentially.
- 6. Repeating step 3 to 5 through the test.
- 7. Recording the test result as shown in following table.
- 8. Rotating the induction coil by 90° (Y direction) then repeat step 3 to 7.
- 9. Rotating the induction coil by 90° again (Z direction) then repeat step 3 to 7.

Field Strength: 1A/m Power Freq.: 50Hz Orientation: X, Y, Z

Orientation Field		Result (Pass/Fail)	Remark

^{**}Note: Not applicable, because no any component can be influenced by power magnetic fields.

Performance & Result:

- **Criteria A:** The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
- **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

PASS	FAILED
Observation: N/A(EUT	Without any magnetic component)

^{*.} Test conditions:

SECTION 9 IEC 61000-4-11 (VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS)

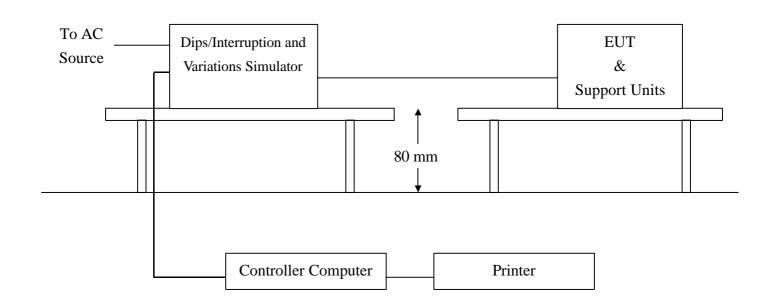
VOLTAGE DIPS / SHORT INTERRUPTIONS

Port : AC mains

Basic Standard : IEC 61000-4-11 (1994)

Requirement : PHASE ANGLE 0, 45, 90, 135, 180, 225, 270, 315 degrees

	Test Level	Reduction	Duration	Performance
Voltage	% U _T	(%)	(periods)	Criteria
Dips	<5	>95	0.5	В
	70	30	25	С


Voltage	Test Level	Reduction	Duration	Performance
Voltage	% U _T	(%)	(periods)	Criteria
Interceptions	<5	>95	250	С

Test Interval : Min. 10 sec.

Temperature : 18^{0} C **Humidity** : 68%

Test By : Stanley Huang

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. A test program was loaded and executed in Windows mode.
- 3. The data was displayed on the monitor and filling the screens.
- 4. The test program exercised related support units sequentially.
- 5. Setting the parameter of tests and then Perform the test software of test simulator.
- 6. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 7. Repeating step 3 to 4 through the test.
- 8. Recording the test result in test record form.

Test conditions:

The duration with a sequence of three dips/interruptions with interval of 10s minimum (between each test events)

Voltage Dips:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Meet Performance Criteria
0	100	0.5	Normal	A
70	30	25	Normal	A

Voltage Interruptions:

Test Level	Reduction	Duration	Observation	Meet Performance
% U _T	(%)	(periods)		Criteria
0	100	250	EUT shut down, But EUT	С
			can be auto recovered after	
			EUT restart.	

Normal: No any functions degrade during and after the test.

Performance & Result:

Criteria A:	The apparatus continues to operate as intended. No degradation of performance or
	loss of function is allowed below a performance level specified by the manufacturer
	when the apparatus is used as intended. In some cases the performance level may
	be replaced by a permissible loss of performance.
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of
	performance or loss of function is allowed below a performance level specified by

performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

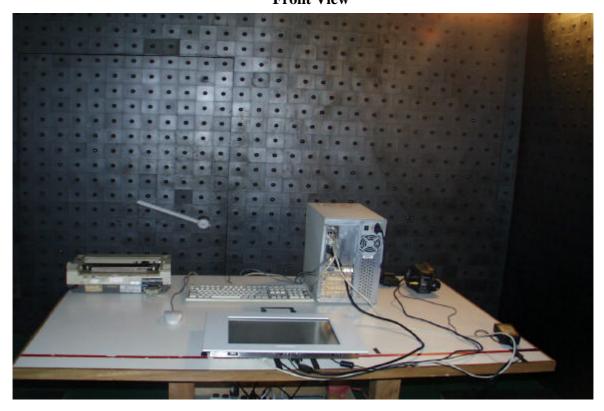
Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

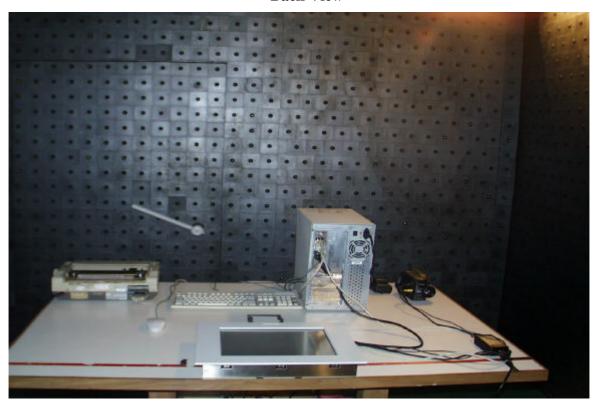
V PASS	FAILED	

APPENDIX 1

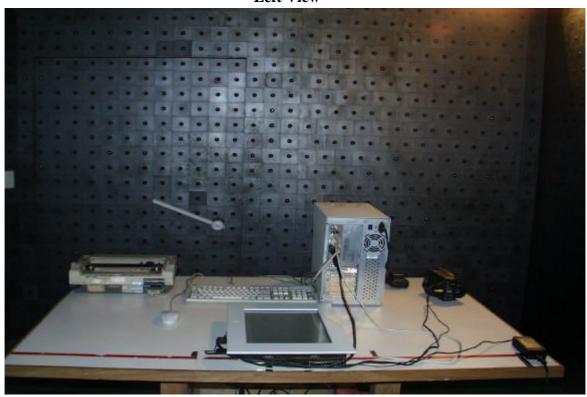
PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST (EN 55022)


POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST (EN 61000-3-2, EN 61000-3-3)


ELECTROSTATIC DISCHARGE TEST (IEC 61000-4-2)

RADIATED ELECTROMAGNETIC FIELD (IEC 61000-4-3) Front View


Back View

Right View

Left View

FAST TRANSIENTS/BURST TEST & SURGE IMMUNITY TEST (IEC 61000-4-4/5)

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (IEC 61000-4-6)

VOLTAGE DIPS / INTERRUPTION TEST (IEC 61000-4-11)

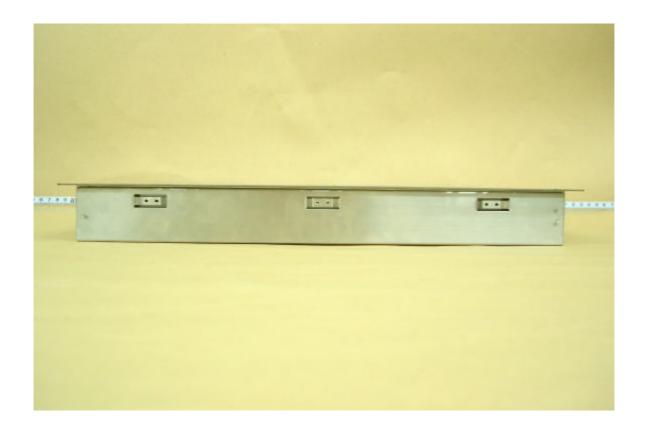
APPENDIX 2

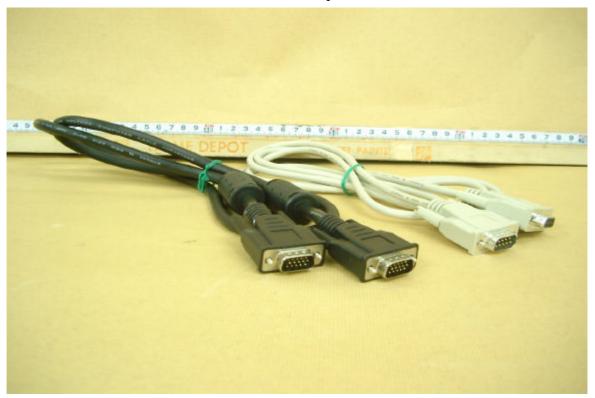
PHOTOGRAPHS OF EUT


Model Number: OPD-215ABT

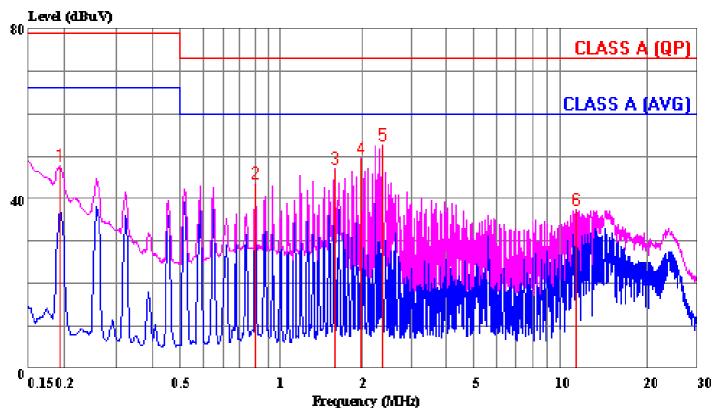
Model Number: OPD-215ART




Model Number: OPD-215AT



Cable & Adaptor



APPENDIX 3

CONDUCTED EMISSION PLOT RADIATED EMISSION DATA

Tel:02-2217-0894 Fax:02-2217-1254

Data#: 66 File#: 0031c.emi Date: 2002-03-29 Time: 10:31:39

(Conducted)

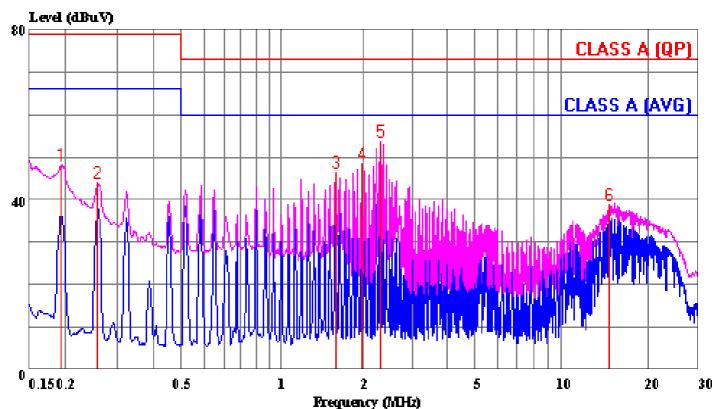
Trace: 55 56 Ref Trace:

Condition: LINE

Report No. : 02E0031 Test Engr. : CLIFF LAI

Company : AAEON Technology Inc.

: OPD-215ABT


Test Config : EUT/ ALL PERIPHERALS Type of Test: EN 55022 CLASS A Mode of Op. : 1024X768 (WORST)

Page: 1

	Freq	Read Level	Factor	Level	Limit Line		Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.192	47.65		47.67			
2	0.904 1.689	43.41 46.83		43.49 46.95			
4	2.088	49.22	0.14	49.35	73.00	-23.65	Peak
5	2.474	52.51	0.16	52.67	73.00	-20.33	Peak
6	11,498	37.02	0.36	37.38	73.00	-35.62	Peak

Tel:02-2217-0894 Fax:02-2217-1254

Data#: 65 File#: 0031c.emi Date: 2002-03-29 Time: 10:30:13

(Conducted)

Trace: 63 64 Ref Trace:

Condition: NEUTRAL
Report No. : 02E0031
Test Engr. : CLIFF LAI

Company : AAEON Technology Inc.

EUT : OPD-215ABT

Test Config : EUT/ ALL PERIPHERALS Type of Test: EN 55022 CLASS A Mode of Op. : 1024X768 (WORST)

Page: 1

	Freq	Read Level	Factor	Level	Limit Line		Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.192	48.19		48.21			
2	0.258	44.00	0.02	44.02	79.00	-34.98	Peak
3	1.689	46.23	0.12	46.35	73.00	-26.65	Peak
4	2.088	48.42	0.14	48.55	73.00	-24.45	Peak
5	2.409	53.43	0.15	53.58	73.00	-19.42	Peak
6	14.828	38.28	0.40	38.68	73.00	-34.32	Peak

Tel:02-2217-0894 Fax:02-2217-1254

Data#: 2 File#: 0031e.emi Date: 2002-03-29 Time: 11:36:52

E-Site

Condition: VERTICAL Report No. : 02E0031

Test Engr. : CLIFF LAI

Company : AAEON Technology Inc.

EUT : OPD-215ABT

Test Config : EUT/ ALL PERIPHERALS Type of Test: EN 55022 CLASS A Mode of Op. : 800X600 (WORST)

Page: 1

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB	
1	110.965	46.60	-15.50	31.10	40.00	-8.90	Peak
2	147.950		-14.80	30.50		-9.50	
3	222.034	47.90	-10.14	37.76	40.00	-2.24	OP
4	281.490	47.80	-7.46	40.34	47.00	-6.66	~ Peak
5	295.910	47.20	-7.24	39.96	47.00	-7.04	Peak
6	443.910	44.40	-3.88	40.52	47.00	-6.48	Peak
7	517.890	39.10	-2.66	36.44	47.00	-10.56	Peak
8	554.910	42.00	-1.69	40.31	47.00	-6.69	Peak
9	591.870	37.60	-0.81	36.79	47.00	-10.21	Peak
10	631.750	32.10	0.19	32.29	47.00	-14.71	Peak

Tel:02-2217-0894 Fax:02-2217-1254

Date: 2002-03-29 Time: 11:51:57

Data#: 3 File#: 0031e.emi

E-Site

Condition: HORIZONTAL Report No. : 02E0031
Test Engr. : CLIFF LAI
Company : AAEON Technology Inc.
EUT : OPD-215ABT

Test Config : EUT/ ALL PERIPHERALS Type of Test: EN 55022 CLASS A Mode of Op. : 800X600 (WORST)

Page: 1

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB	
1	135.010	47.80	-15.81	31.99	40.00	-8.01	Peak
2	151.880	50.60	-14.50	36.10	40.00	-3.90	Peak
3	222.260	39.40	-10.06	29.34	40.00	-10.66	Peak
4	283.500	35.40	-7.43	27.97	47.00	-19.03	Peak
5	291.620	39.20	-7.31	31.89	47.00	-15.11	Peak
6	301.290	42.80	-7.15	35.65	47.00	-11.35	Peak
7	445.510	28.70	-3.86	24.84	47.00	-22.16	Peak
8	553.530	29.10	-1.73	27.37	47.00	-19.63	Peak
9	631.720	31.00	0.19	31.19	47.00	-15.81	Peak