

CE EMC TEST REPORT

REPORT NO.: CE901115A06

MODEL NO.: AMB-2053HTT

RECEIVED: Nov. 15, 2001

TESTED: Nov. 15, 2001 ~ Jan. 8, 2002

APPLICANT: AAEON TECHNOLOGY INC.

ADDRESS: 5F, No. 135, Lane 235, Pao-Hsin Rd., Hsin-

Tien City, Taipei, Taiwan, R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: 47 14th Lin, Chiapau Tsun, Linko, Taipei,

Taiwan, R.O.C.

This test report consists of 76 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1	CERTIFICATION	5
2	SUMMARY OF TEST RESULTS	6
3	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	
3.2.1	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.3	DESCRIPTION OF SUPPORT UNITS	
3.3.1	FOR EMISSION TEST	
3.3.2	FOR HARMONICS / FLICKER / IMMUNITY TEST	
4	EMISSION TEST	. 12
4.1	CONDUCTED EMISSION MEASUREMENT	
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURE	
4.1.4	DEVIATION FROM TEST STANDARD	
4.1.5 4.1.6	TEST SETUP EUT OPERATING CONDITIONS	13
4.1.6	TEST RESULTS	
4.1.7	RADIATED EMISSION MEASUREMENT	
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST PROCEDURE	
4.2.4	DEVIATION FROM TEST STANDARD	
4.2.5	TEST SETUP	18
4.2.6	EUT OPERATING CONDITIONS	18
4.2.7	TEST RESULTS (A)	
4.2.8	TEST RESULTS (B)	22
4.3	HARMONICS CURRENT MEASUREMENT	
4.3.1	LIMITS OF HARMONICS CURRENT MEASUREMENT	
4.3.2	TEST INSTRUMENTS	
4.3.3	TEST PROCEDURE	
4.3.4	TEST SETUP	_
	EUT OPERATING CONDITIONSTEST RESULTS	
4.3.0	VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT	∠ <i>1</i> 28
4.5	LIMITS OF VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT	
4.5.1	TEST INSTRUMENTS	
4.5.2	TEST PROCEDURE	
4.5.3	TEST SETUP	
4.5.4	EUT OPERATING CONDITIONS	
4.5.5	TEST RESULTS	
5	IMMUNITY TEST	. 31
5.1	GENERAL DESCRIPTION	
-		

5.2	GENERAL PERFORMANCE CRITERIA DESCRIPTION	32
5.3	EUT OPERATING CONDITION	32
5.4	ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	33
5.4.1	TEST SPECIFICATION	33
5.4.2	TEST INSTRUMENTS	33
5.4.3	TEST PROCEDURE	33
5.4.4	TEST SETUP	35
5.4.5	TEST RESULTS (A)	36
5.4.6	TEST RESULTS (B)	37
5.5	RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNI	ΤY
	TEST (RS)	38
5.5.1	TEST SPECIFICATION	38
5.5.2	TEST INSTRUMENTS	38
5.5.3	TEST PROCEDURE	38
5.5.4	TEST SETUP	
5.5.5	TEST RESULTS	
5.6	ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)	41
5.6.1	TEST SPECIFICATION	41
5.6.2	TEST INSTRUMENTS	41
5.6.3	TEST PROCEDURE	41
5.6.4	TEST SETUP	42
5.6.5	TEST RESULTS (A)	44
5.6.6	TEST RESULTS (B)	45
5.7	SURGE IMMUNITY TEST	
5.7.1	TEST SPECIFICATION	
5.7.2	TEST INSTRUMENTS	46
5.7.3	TEST PROCEDURE	47
5.7.4	TEST SETUP	
5.7.5	TEST RESULTS	
5.8	IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS	
	(CS)	
5.8.1	TEST SPECIFICATION	
	TEST INSTRUMENTS	
	TEST PROCEDURE	
	TEST SETUP	
	TEST RESULTS (A)	
5.8.6	TEST RESULTS (B)	
5.9	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	
	TEST SPECIFICATION	
	TEST INSTRUMENTS	
5.9.3	TEST PROCEDURE	
	TEST SETUP	
	TEST RESULTS	55
5.10	VOLTAGE DIP/SHORT INTERRUPTIONS/VOLTAGE VARIATIONS (DIP)	
	IMMUNITY TEST	
	TEST SPECIFICATION	
5.10.2	TEST INSTRUMENTS	56

5.10.3	TEST PROCEDURE	56
5.10.4	TEST SETUP	.57
5.10.5	TEST RESULTS	.57
6	PHOTOGRAPHS OF THE TEST CONFIGURATION	58
7	APPENDIX - INFORMATION ON THE TESTING LABORATORIES	76

CERTIFICATION

PRODUCT: PANEL PC BRAND NAME: AAEON

MODEL NO: AMB-2053HTT

TEST ITEM: ENGINEERING SAMPLE **APPLICANT:** AAEON TECHNOLOGY INC.

STANDARDS: EN 55022:1994+A1:1995 EN 61000-6-2:2001

> +A2:1997, Class A IEC 61000-4-2:1995 EN 55011: 1998, IEC 61000-4-3:1995 **Group I Class A** IEC 61000-4-4:1995 EN 61000-3-2:1995+A1:1998 IEC 61000-4-5:1995 +A2:1998, Class A IEC 61000-4-6:1996 EN 61000-3-3:1995 IEC 61000-4-8:1993 IEC 61000-4-11:1994

We, Advance Data Technology Corporation, hereby certify that one sample of the designation has been tested in our facility from Nov. 15, 2001 to Jan. 8, 2002. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions herein specified.

TESTED BY: (Arthur Lin)

TESTED BY: (Arthur Lin)

TESTED BY: (Andy Cheng), DATE: Jan. 15. 200>
(Immunity) (Andy Cheng)

CHECKED BY: (Vickie Yu), DATE: Jan. 15. 200>

APPROVED BY: Tile Source , DATE: Jan 15 5002 (Mike Su, Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

EMISSION					
Standard	Test Type	Result	Remarks		
EN 55022:1994			Meets Class A Limit		
+A1:1995+A2:1997,	Conducted Test	PASS	Minimum passing margin is		
Class A			-21.72 dB at 0.152 MHz		
	Radiated Test	PASS	Meets Class A Limit		
EN 55011: 1998,			Minimum passing margin is		
Group I Class A			-2.00 dB at 233.86 MHz		
EN61000-3-2:1995	Harmonic current	PASS			
+A1:1998+A2:1998,			Meets Class A Limit		
Class A	emissions				
EN61000-3-3:1995	Voltage fluctuations & flicker	PASS	Meets the requirements.		

IMMUNITY (EN 61000-6-2:2001)						
Standard	Test Type	Result	Remarks			
IEC 61000-4-2: 1995	Electrostatic discharge immunity test	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-3: 1995	Radiated, radio-frequency, electromagnetic field immunity test	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-4: 1995	Electrical fast transient / burst immunity test.	PASS	Meets the requirements of Performance Criterion B			
IEC 61000-4-5: 1995	Surge immunity test	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-6: 1996	Immunity to conducted disturbances, induced by radio-frequency fields	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-8: 1993	Power frequency magnetic field immunity test.	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-11: 1994	Voltage dips, short interruptions and voltage variations immunity tests	PASS	Meets the requirements of Voltage Dips: 1. 30% reduction - Performance Criterion A 2. 60% reduction - Performance Criterion A 3. 60% reduction - Performance Criterion A Voltage Interruptions: 1. >95% reduction - Performance Criterion C			

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	PANEL PC
MODEL NO.	AMB-2053HTT
POWER SUPPLY	Switching power supply DC 10~30V, 70W Power cord: Non-shielded 3-pin (1.8m)
DATA CABLE	NA

NOTE: The EUT modular system panel PCs, is a PC-based industrial computer that are designed to serve as a Human Machine Interfaces. It is a full-function system with a 15" XGA (1024x768) color TFT LCD display.

The EUT is characterized by its compactness and a heavy-duty steel chassis with aluminum front panel.

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

The EUT was pre-tested under the following condition:

- ♦ LCD panel combined with its chassis.
- ♦ LCD panel separated from its chassis.

The worst emission level was found when the EUT LCD panel was tested separated from its chassis.

The EUT also can use DC battery and AC power input, this two modes were all tested and recorded in this report.

MODE 1	AC power input
MODE 2	DC battery

The EUT was tested with the following configuration under the resolution of 1024x768.

COMPONENTS	MODEL & BRAND NAMES
CPU	Intel Celeron 366MHz
LCD PANEL	15" XGA TFT Fujitsu, Model: FLC38XGC6V-06
LCD BackPlane	Model: HP5352
LVDS BOARD	Model: LVDS-T202
HDD	Fujitsu, Model: MHK2060AT, 20GB
FDD	NEC, Model: FD1238T, 1.44MB
CD-ROM	Vintech, Model: VIN-S24A, 24X
MAIN BOARD	Model: SBC-658
	SKY NET, Model: SNP-8071-A,
AC POWER	I/P: 85-270V 47-63Hz, 2/1A
	O/P: 12V, 1.5A; 5V, 10A; -12V, 0.3A
	MAGIC POWER, Model: MPD-8071-S
DC BATTERY	I/P: +10Vdc ~ +30Vdc, Normal +24Vdc Max 13A
	O/P: +5V, 10A; +12V, 1.5A; -12V, 0.3A

3.2.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a kind of ITE equipment and, according to the specifications of the manufacturers, must comply with the requirements of the following standards:

EN 55022:1994+A1:1995+A2:1997, Class A	EN 61000-6-2:2001
EN 55011:1998, Group I Class A	IEC 61000-4-2:1995
EN 61000-3-2:1995+	IEC 61000-4-3:1995
A1:1998+A2:1998, Class A	IEC 61000-4-4:1995
EN 61000-3-3:1995	IEC 61000-4-5:1995
	IEC 61000-4-6:1996
	IEC 61000-4-8:1993
	IEC 61000-4-11:1994

All tests have been performed and recorded as per the above standards.

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

3.3.1 FOR EMISSION TEST

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	COLOR MONITOR	ADI	CM100	020058T10200176	FCC DoC Approved
2	PRINTER	HP	2225C+	2949S63865	DSI6XU2225
3	MODEM	ACEEX	1414	980020504	IFAXDM1414
4	MODEM	ACEEX	1414	980020505	IFAXDM1414
5	PS/2 KEYBOARD	втс	5121W	A00801379	E5XKB5121WTH01 10
6	PS/2 MOUSE	LOGITECH	M-S43	LZE00703197	DZL211106
7	PERSONAL COMPUTER	HP	D4579A	SG73001726	FCC DoC Approved
8	21" COLOR MONITOR	HP	D2846A	JP90512317	FCC DoC Approved
9	PS/2 KEYBOARD	втс	5121W	A00801375	E5XKB5121WTH01 10
10	PS/2 MOUSE	LOGITECH	M-S43	LZE93502451	DZL211106
11	LAN CARD	INTEL	PRO/100S DESTOP ADAPTER	0002B33BB665	FCC DoC Approved

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	1.8 m braid shielded wire, terminated with VGA connector via metallic frame, w/o core
2	1.2m braid shielded wire, terminated with DB25 and Centronics connector via metallic
2	frame, w/o core.
3	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
S	w/o core.
4	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
4	w/o core.
5	1.6 m foil shielded wire, terminated with PS/2 connector via metallic frame, w/o core.
6	1.8 m foil shielded wire, terminated with PS/2 connector via drain wire, w/o core.
7	NA
8	1.8 m braid shielded wire, terminated with VGA connector via metallic frame, w/o core.
9	1.6 m foil shielded wire, terminated with PS/2 connector via metallic frame, w/o core.
10	1.8 m foil shielded wire, terminated with PS/2 connector via drain wire, w/o core.
11	NA

NOTE: 1. All power cords of the above support units are non-shielded (1.8m).

2. The EUT acted as SERVER PC and communicated with support units 7-11 (kept in a remote area), which acted as WORKSTATION and partners of communication system via a UTP cable (20m).

3.3.2 FOR HARMONICS / FLICKER / IMMUNITY TEST

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	MONITOR	NEC	V520	NA	FCC DoC Approved
2	PRINTER	HP	C2145A	SG5BN160GY	B94C2145X
3	MODEM	GVC	F-1128V1R6	96-191-113003	DK4F1128VR6
4	MODEM	GVC	F-1114V/R6	853E100	DK4F1114VR6
5	KEYBOARD	BTC	5140	75B110685	E5XKBM10410
6	MOUSE	LOGITECH	M-S43	LZE00703084	DZL211106
7	Personal Computer	HP	BRIO BA410	SG10602695	FCC DoC Approved
8	LAN CARD	3 СОМ	3C905-TXM ETHERLINK 10/100 PCI	HKQD46B282	FCC DoC Approved
9	COLOR MONITOR	ACER	7254e	9171602008	JVP7254E
10	PS/2 KEYBOARD	HP	C3758A	C3758-60223	CIGE03633
11	USB MOUSE	DEXIN Corp.	A2U800A	71001821	NIYA2U800A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	1.5 m braid shielded wire, terminated with VGA connector via metallic frame, one core.
2	1.2m braid shielded wire, terminated with DB25 and Centronics connector via metallic
	frame, w/o core.
3	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
	w/o core.
4	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
	w/o core.
5	1.6 m foil shielded wire, terminated with AT connector via drain wire, w/o core.
6	1.8 m foil shielded wire, terminated with PS2 connector via drain wire, w/o core.
7	NA
8	NA
9	1.8 m braid shielded wire, terminated with VGA connector via metallic frame, w/o core.
10	1.5 m foil shielded wire, terminated with PS/2 connector via metallic frame, w/o core.
11	1.5 m foil shielded wire, terminated with USB connector via drain wire, w/o core.

NOTE: 1. All power cords of the above support units are non shielded (1.8m).

2. The EUT acted as SERVER PC and communicated with support units 7-11 (kept in a remote area), which acted as WORKSTATION and partners of communication system via a "CAT.5 UTP" cable (10m).

4 EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCY (MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTE: (1) The lower limit shall apply at the transition frequencies.

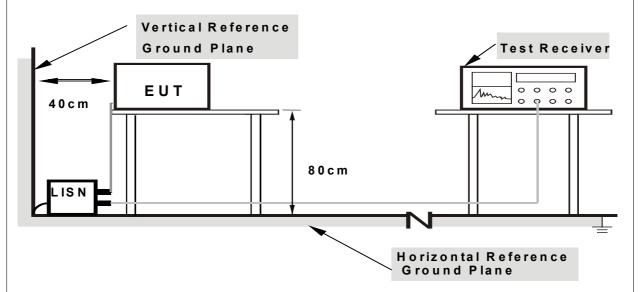
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ Test	ESHS30	828109/007	July 4, 2002
Receiver			, ,
ROHDE & SCHWARZ Artificial	ESH3-Z5	839135/006	July 3, 2002
Mains Network (for EUT)	20.10 20	300100,000	
* ROHDE & SCHWARZ	ENY41	838119/028	Dec. 2, 2002
4-wire ISN	2.11.	0001107020	
* ROHDE & SCHWARZ	ENY22	837497/016	Dec. 2, 2002
2-wire ISN	LIVIZZ	0074077010	,
EMCO-L.I.S.N. (for peripheral)	3825/2	9204-1964	July 3, 2002
Software	Cond-V2L	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C02.01	July 5, 2002
HP Terminator (For EMCO	11593A	E1-01-298	Feb. 20, 2002
LISN)	11393A	E1-01-290	Feb. 20, 2002
HP Terminator (For EMCO	115024	E1-01-299	Eab 20 2002
LISN)	11593A	⊑1-01-299 	Feb. 20, 2002
Shielded Room	Site 2	ADT-C02	NA
VCCI Site Registration No.	Site 2	C-240	NA

NOTE: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. "*": These equipment are used for conducted telecom port test only (if tested).


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

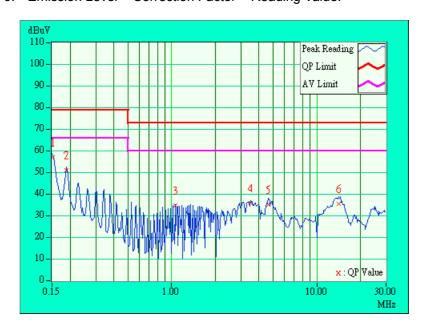
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. EUT ran a test program to enable all functions.
- b. EUT read and wrote messages from HDD & FDD.
- c. EUT sent and received messages from WORKSTATION PC via a UTP cable and a telephone cable.
- d. EUT sent "H" messages to its LCD panel and monitor. Then LCD panel and monitor displayed them on their screen simultaneously.
- e. EUT sent "H" messages to printer and printer printed "H" messages on paper.
- f. EUT sent messages to modem.
- g. Steps c-g were repeated.

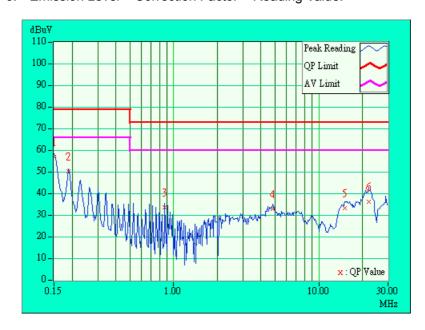

4.1.7 TEST RESULTS

EUT	PANEL PC	MODEL NO.	AMB-2053HTT	
MODE	1	6dB BANDWIDTH	10 kHz	
INPUT POWER	230Vac, 50 Hz	PHASE	Line (L)	
ENVIRONMENTAL	25 deg. C, 60 % RH,	TESTED BY: Arthui	Lin	
CONDITIONS	1005 hPa	I ESTED BY. AITHUI	I LIII	

Ma	Freq.	Corr.	Readin	ing Value Emission Limit Marg		Limit		gin		
No		Factor	[dB (uV)]		[dB	[dB (uV)]		(uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.152	0.10	57.18	ı	57.28	i	79.00	66.00	-21.72	-
2	0.189	0.10	50.97	ı	51.07	i	79.00	66.00	-27.93	-
3	1.059	0.10	34.68	ı	34.78	i	73.00	60.00	-38.22	-
4	3.516	0.25	36.09	ı	36.34	i	73.00	60.00	-36.66	-
5	4.648	0.32	35.28	-	35.60	-	73.00	60.00	-37.40	-
6	14.180	0.75	35.63	-	36.38	-	73.00	60.00	-36.62	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



EUT	PANEL PC	MODEL NO.	AMB-2053HTT	
MODE	1	6dB BANDWIDTH	10 kHz	
INPUT POWER	230Vac, 50 Hz	PHASE	Neutral (N)	
ENVIRONMENTAL	25 deg. C, 60 % RH,	TESTED BY: Arthur Lin		
CONDITIONS	1005 hPa	TESTED BY. Artiflui	LIII	

No	Freq.	Corr.	Reading Value		Emission Level		l Limit		Mar	gin
NO		i actor	[dB (uV)]		[dB ((uV)]	[dB	(uV)]	(di	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.10	57.01	ı	57.11	ı	79.00	66.00	-21.89	-
2	0.189	0.10	50.20	ı	50.30	ı	79.00	66.00	-28.70	-
3	0.869	0.10	33.60	ı	33.70	ı	73.00	60.00	-39.30	-
4	4.805	0.31	33.02	ı	33.33	ı	73.00	60.00	-39.67	-
5	15.090	0.60	33.33	ı	33.93	ı	73.00	60.00	-39.07	-
6	22.012	0.84	36.41	-	37.25	-	73.00	60.00	-35.75	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

EDECLIENCY (MU-)	Class A (at 10m)	Class B (at 10m)
FREQUENCY (MHz)	dBuV/m	dBuV/m
30 – 230	40	30
230 - 1000	47	37

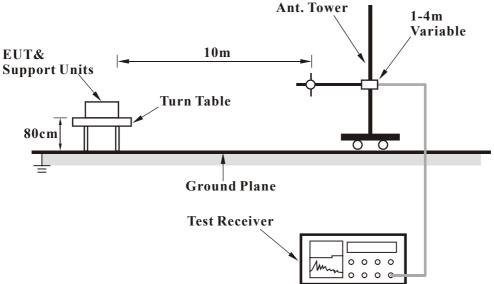
- **NOTE**: (1) The lower limit shall apply at the transition frequencies.
 - (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
 - (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

TEST INSTRUMENTS 4.2.2

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL	
HP Spectrum Analyzer	8590L	3544A01042	April 16, 2002	
HP Preamplifier	8447D	2944A08313	April 3, 2002	
* HP Preamplifier	8449B	3008A01201	Dec. 06, 2002	
* HP Preamplifier	8449B	3008A01292	Aug. 21, 2002	
* ROHDE & SCHWARZ TEST RECEIVER	ESI7	838496/016	Feb. 17, 2002	
SCHWARZBECK Tunable	VHA 9103	E101051	Nov. 23, 2002	
Dipole Antenna	UHA 9105	E101055	1NOV. 23, 2002	
* ROHDE & SCHWARZ TEST	ESMI	839013/007	Jan. 25, 2002	
RECEIVER	LOWII	839379/002	Jan. 25, 2002	
* CHASE BILOG Antenna	CBL6111A	1647	June 27, 2002	
* SCHWARZBECK Horn	BBHA9120-D1	D130	July 6, 2002	
Antenna	DDI 1/3 120-D 1	D130	July 0, 2002	
* EMCO Horn Antenna	3115	9312-4192	April 15, 2002	
* EMCO Turn Table	1016	1722	NA	
* EMCO Tower	1051	1825	NA	
* Software	AS61D4	NA	NA	
* ANRITSU RF Switches	MP59B	M28342	June 27, 2002	
* TIMES RF cable	LMR-600	CABLE-ST4-01	June 27, 2002	
Open Field Test Site	Site 4	ADT-R04	June 8, 2002	
VCCI Site Registration No.	Site 4	R-1038	NA	

NOTE: 1.The measurement uncertainty is less than +/- 3.0dB, which is calculated as per the NAMAS document NIS81.

- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
- 3. "*" = These equipment are used for the final measurement.
- 4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz.


4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10-meter open field site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using the quasi- peak method or average method as specified and then reported In Data sheet peak mode and QP mode.

4.2.4 DEVIATION FROM TEST STANDARD

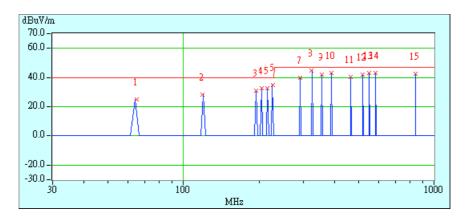
No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

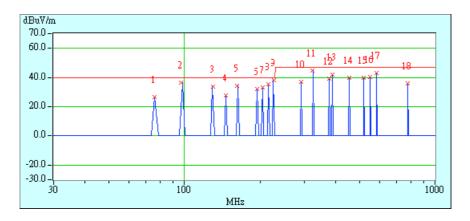

4.2.7 TEST RESULTS (A)

EUT	PANEL PC	MODEL NO.	AMB-2053HTT	
MODE	1	FREQUENCY RANGE	30-1000 MHz	
INPUT POWER	230Vac, 50 Hz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120kHz	
ENVIRONMENTAL CONDITIONS	22 deg. C, 55 % RH, 1005 hPa	TESTED BY: Arthur Lin		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M									M	
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-Amp.	Correction
No.	(MHz)	Level	(dBuV/m)		Height	Angle	Value	Factor	Factor	Gain	Factor
	(IVITZ)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	65.00	25.0 QP	40.00	-15.00	4.00H	298	19.26	5.01	0.73	0.00	-5.74
2	119.12	28.0 QP	40.00	-12.00	4.00H	95	14.82	12.22	0.96	0.00	-13.18
3	194.98	31.0 QP	40.00	-9.00	4.00H	74	20.62	8.98	1.40	0.00	-10.38
4	205.70	32.5 QP	40.00	-7.50	4.00H	340	21.73	9.33	1.43	0.00	-10.77
5	216.65	32.8 QP	40.00	-7.20	4.00H	358	21.20	10.14	1.46	0.00	-11.60
6	227.53	34.9 QP	40.00	-5.10	4.00H	298	22.63	10.79	1.49	0.00	-12.27
7	292.42	40.0 QP	47.00	-7.00	2.76H	88	25.34	13.07	1.60	0.00	-14.67
8	324.91	44.6 QP	47.00	-2.40	2.60H	304	29.00	13.76	1.81	0.00	-15.57
9	357.41	42.2 QP	47.00	-4.80	2.94H	250	25.78	14.39	2.03	0.00	-16.42
10	389.89	43.2 QP	47.00	-3.80	2.76H	7	25.60	15.58	2.06	0.00	-17.64
11	465.70	40.3 QP	47.00	-6.70	1.92H	248	20.66	17.40	2.23	0.00	-19.64
12	519.86	42.1 QP	47.00	-4.90	1.55H	279	20.64	19.21	2.22	0.00	-21.43
13	552.36	43.3 QP	47.00	-3.70	1.97H	211	20.23	20.66	2.40	0.00	-23.07
14	584.83	43.2 QP	47.00	-3.80	1.78H	127	20.41	20.27	2.52	0.00	-22.79
15	844.75	42.6 QP	47.00	-4.40	1.00H	69	15.22	24.36	3.03	0.00	-27.39

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) Correction Factor(dB)
- 2. Correction Factor(dB/m) = Pre-Amplifier Gain (dB) Antenna Factor (dB/m) Cable Factor (dB)
- 3. Pre-Amplifier Gain (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level Limit value.



EUT	PANEL PC	MODEL NO.	AMB-2053HTT	
MODE	1	FREQUENCY RANGE	30-1000 MHz	
INPUT POWER	230Vac, 50 Hz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120kHz	
ENVIRONMENTAL CONDITIONS	22 deg. C, 55 % RH, 1005 hPa	TESTED BY: Arthur Lin		

	ΑN	NTENNA	POLA	RITY 8	& TEST	DIST	ANCE	: VERT	ICAL	AT 10 N	1
	F===	Emission	Limit	Marain	Antenna	Table	Raw	Antenna	Cable	Pre-Amp.	Correction
No.	Freq.	Level	(dBuV/m)	Margin	Height	Angle	Value	Factor	Factor	Gain	Factor
	(MHz)	(dBuV/m)	(ubuv/III)	m) (dB)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	75.86	26.8 QP	40.00	-13.20	1.33V	33	19.69	6.29	0.82	0.00	-7.11
2	97.00	36.4 QP	40.00	-3.60	1.00V	357	25.67	9.78	0.95	0.00	-10.73
3	130.00	34.0 QP	40.00	-6.00	1.00V	249	21.08	11.93	0.99	0.00	-12.92
4	146.14	27.8 QP	40.00	-12.20	1.00V	341	15.61	11.08	1.11	0.00	-12.19
5	162.40	34.2 QP	40.00	-5.80	1.00V	46	23.10	9.84	1.29	0.00	-11.13.
6	194.96	32.2 QP	40.00	-7.80	1.00V	256	21.82	8.98	1.40	0.00	-10.38
7	205.74	33.3 QP	40.00	-6.70	1.00V	5	22.53	9.33	1.43	0.00	-10.76
8	216.65	35.6 QP	40.00	-4.40	1.00V	11	24.00	10.14	1.46	0.00	-11.60
9	227.44	37.9 QP	40.00	-2.10	1.00V	4	25.60	10.79	1.49	0.00	-12.27
10	292.30	37.3 QP	47.00	-9.70	1.00V	220	22.64	13.07	1.60	0.00	-14.67
11	324.91	44.6 QP	47.00	-2.40	1.00V	299	29.01	13.76	1.81	0.00	-15.58
12	379.08	39.0 QP	47.00	-8.00	1.00V	36	21.70	15.21	2.05	0.00	-17.27
13	389.82	42.0 QP	47.00	-5.00	1.00V	213	24.36	15.58	2.06	0.00	-17.65
14	454.88	39.6 QP	47.00	-7.40	1.00V	21	20.22	17.10	2.28	0.00	-19.38
15	519.86	40.0 QP	47.00	-7.00	3.57V	318	18.57	19.21	2.22	0.00	-21.44
16	552.34	40.6 QP	47.00	-6.40	3.83V	318	17.53	20.66	2.40	0.00	-23.08
17	584.85	43.1 QP	47.00	-3.90	3.94V	323	20.35	20.27	2.52	0.00	-22.80
18	779.79	36.0 QP	47.00	-11.00	1.73V	9	10.31	22.80	2.89	0.00	-25.70

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) Correction Factor(dB)
- 2. Correction Factor(dB/m) = Pre-Amplifier Gain (dB) Antenna Factor (dB/m) Cable Factor (dB)
- 3. Pre-Amplifier Gain (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level Limit value.

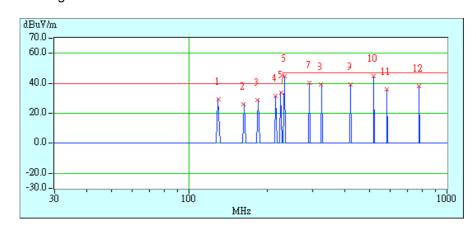
EUT	PANEL PC	MODEL NO.	AMB-2053HTT
MODE	1	FREQUENCY RANGE	11.7-12.7 GHz
INPUT POWER	230Vac, 50 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak, 1 MHz
ENVIRONMENTAL CONDITIONS	22 deg. C, 55 % RH, 1005 hPa	% RH, TESTED BY: Arthur Lin	

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
Frequency	S.G.	Gain(Dipole)-	EUT		Limits	Margin		
(MHz)	Output power (dBm)	Cable Loss= Correction Factor	disturban	ation ce power ·dBpW)	(dBpW)	(dB)		
*	*	*	*	*	*	*		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
Frequency	S.G.	Gain(Dipole)-	EUT		Limits	Margin	
	Output	Cable Loss=	Radiation				
(MHz)	power	Correction	disturbance power		(dBpW)	(dB)	
	(dBm)	Factor	(dBm→	(dBm→dBpW)			
*	*	*	*	*	*	*	

REMARKS: 1. 0dBm=90dBpW

- 2. Radiation disturbance power =S.G output power +Correction factor
- 3. Gain (Dipole)= Gain of a half-wave dipole4. "*": The emission levels were very low against the limit.

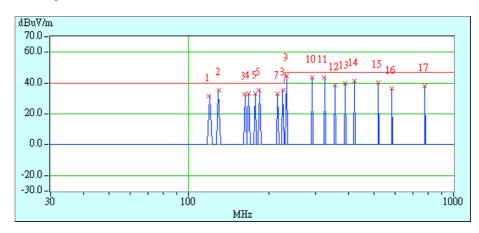

4.2.8 TEST RESULTS (B)

EUT	PANEL PC	MODEL NO.	AMB-2053HTT
MODE	2	FREQUENCY RANGE	30-1000 MHz
INPUT POWER	230Vac, 50 Hz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120kHz
ENVIRONMENTAL CONDITIONS	22 deg. C, 55 % RH, 1005 hPa	TESTED BY: Arth	nur Lin

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M										
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-Amp.	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	Gain	Factor
	(1011 12)	(dBuV/m)	(ubu v/III)	(UD)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	129.97	29.1 QP	40.00	-10.90	4.00H	106	16.21	11.93	0.99	0.00	-12.92
2	162.47	26.2 QP	40.00	-13.80	4.00H	298	15.12	9.84	1.29	0.00	-11.13
3	184.14	28.9 QP	40.00	-11.10	4.00H	73	18.67	8.90	1.35	0.00	-10.25
4	216.01	31.6 QP	40.00	-8.40	4.00H	326	20.02	10.14	1.46	0.00	-11.60
5	227.44	33.7 QP	40.00	-6.30	4.00H	42	21.43	10.79	1.49	0.00	-12.27
6	233.86	45.0 QP	47.00	-2.00	3.88H	312	32.18	11.27	1.51	0.00	-12.78
7	292.45	40.2 QP	47.00	-6.80	3.30H	192	25.54	13.07	1.60	0.00	-14.66
8	324.91	39.2 QP	47.00	-7.80	2.98H	29	23.59	13.76	1.81	0.00	-15.58
9	422.38	39.1 QP	47.00	-7.90	2.78H	59	20.43	16.45	2.18	0.00	-18.64
10	519.87	44.9 QP	47.00	-2.10	2.34H	147	23.47	19.21	2.22	0.00	-21.43
11	584.85	36.1 QP	47.00	-10.90	1.86H	239	13.36	20.27	2.52	0.00	-22.79
12	779.78	38.1 QP	47.00	-8.90	1.26H	261	12.42	22.80	2.89	0.00	-25.70

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) Correction Factor(dB)
- 2. Correction Factor(dB/m) = Pre-Amplifier Gain (dB) Antenna Factor (dB/m) Cable Factor (dB)
- 3. Pre-Amplifier Gain (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level Limit value.



EUT	PANEL PC	MODEL NO.	AMB-2053HTT	
MODE	2	FREQUENCY RANGE	30-1000 MHz	
INPUT POWER	230Vac, 50 Hz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120kHz	
ENVIRONMENTAL CONDITIONS	22 deg. C, 55 % RH, 1005 hPa	TESTED BY: Arthur Lin		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M										
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-Amp.	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	Gain	Factor
	(IVIITZ)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	119.16	31.8 QP	40.00	-8.20	1.00V	140	18.60	12.22	0.96	0.00	-13.18
2	129.97	35.1 QP	40.00	-4.90	1.00V	288	22.19	11.93	0.99	0.00	-12.92
3	162.40	32.8 QP	40.00	-7.20	1.00V	347	21.67	9.84	1.29	0.00	-11.13
4	167.92	33.0 QP	40.00	-7.00	1.00V	358	22.11	9.55	1.30	0.00	-10.86
5	178.72	33.1 QP	40.00	-6.90	1.00V	357	22.83	8.98	1.32	0.00	-10.31
6	184.14	35.5 QP	40.00	-4.50	1.00V	174	25.27	8.90	1.35	0.00	-10.25
7	216.65	33.4 QP	40.00	-6.60	1.00V	197	21.80	10.14	1.46	0.00	-11.60
8	227.44	35.4 QP	40.00	-4.60	1.00V	196	23.13	10.79	1.49	0.00	-12.27
9	233.86	44.5 QP	47.00	-2.50	1.00V	162	31.77	11.27	1.51	0.00	-12.78
10	292.43	43.7 QP	47.00	-3.30	1.00V	50	29.04	13.07	1.60	0.00	-14.67
11	324.93	43.7 QP	47.00	-3.30	1.00V	359	28.17	13.76	1.81	0.00	-15.57
12	357.41	38.8 QP	47.00	-8.20	1.00V	63	22.36	14.39	2.03	0.00	-16.43
13	389.90	39.7 QP	47.00	-7.30	1.00V	226	22.06	15.58	2.06	0.00	-17.64
14	422.40	41.3 QP	47.00	-5.70	1.00V	57	22.72	16.45	2.18	0.00	-18.63
15	519.87	40.5 QP	47.00	-6.50	1.00V	85	19.07	19.21	2.22	0.00	-21.43
16	584.85	36.6 QP	47.00	-10.40	3.82V	137	13.85	20.27	2.52	0.00	-22.79
17	779.78	38.1 QP	47.00	-8.90	1.74V	183	12.38	22.80	2.89	0.00	-25.70

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) Correction Factor(dB)
- 2. Correction Factor(dB/m) = Pre-Amplifier Gain (dB) Antenna Factor (dB/m) Cable Factor (dB)
- 3. Pre-Amplifier Gain (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level Limit value.

EUT	PANEL PC	MODEL NO.	AMB-2053HTT	
MODE	2	FREQUENCY RANGE	11.7-12.7 GHz	
INPUT POWER	230Vac, 50 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak, 1 MHz	
ENVIRONMENTAL CONDITIONS	22 deg. C, 55 % RH, 1005 hPa	TESTED BY: Arthur Lin		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
Frequency	S.G.	Gain(Dipole)-	EUT		Limits	Margin	
	Output	Cable Loss=	Radi	ation			
(MHz)	power	Correction	disturbance power		(dBpW)	(dB)	
	(dBm)	Factor	(dBm→	(dBm→dBpW)			
*	*	*	*	*	*	*	

ANTE	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
Frequency	S.G.	Gain(Dipole)-	EUT		Limits	Margin			
(MHz)	Output power (dBm)	Cable Loss= Correction Factor	disturban	ation ice power ·dBpW)	(dBpW)	(dB)			
*	*	*	*	*	*	*			

REMARKS: 1. 0dBm=90dBpW

- Radiation disturbance power =S.G output power +Correction factor
 Gain (Dipole)= Gain of a half-wave dipole
 "*": The emission levels were very low against the limit.

4.3 HARMONICS CURRENT MEASUREMENT

4.3.1 LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for	Limits for Class A equipment				
Harmonics	Max. permissible				
Order	harmonics current				
n	Α				
Odd	d harmonics				
3	2.30				
3 5 7	1.14				
7	0.77				
9	0.40				
11	0.33				
13	0.21				
15<=n<=39	0.15x15/n				
Eve	n harmonics				
2	1.08				
2 4 6	0.43				
6	0.30				
8<=n<=40	0.23x8/n				

	Limits for Class D equipment				
Harmonics	Max. permissible	Max. permissible			
Order	harmonics current per	harmonics current			
n	watt mA/W	Α			
	Odd Harmonics onl	у			
3	3.4	2.30			
5	1.9	1.14			
7	1.0	0.77			
9	0.5	0.40			
11	0.35	0.33			
13	0.30	0.21			
15<=n<=39	3.85/n	0.15x15/n			

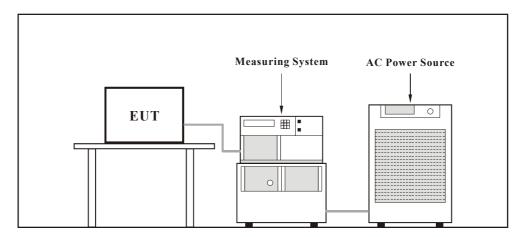
NOTE: 1. Class A and Class D are judged by test equipment automatically as per Section 5 of EN 61000-3-2:1995.

2. The above limits for Class D equipment are for all applications having an active input power > 75 W. No limits apply for equipment with an active input power up to and including 75 W.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
KeyTek, Power Arb Waveform Generator	EP72HF	9508346	April 20, 2002
KIKUSUI AC SWITCHING POWER SUPPLY	PCR 4000L	9508355	April 20, 2002

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.3.3 TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The classification of EUT is according to section 5 of EN 61000-3-2:1995.

The EUT is classified as follows:

- Class A: Balanced three-phase equipment and all other equipment, except that stated in one of the following classes.
- Class B: Portable tools.
- Class C: Lighting equipment, including dimming devices.
- Class D: Equipment having an input current with "special wave shape" and an active input power, $P \le 600 \text{ W}$
- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

4.3.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.3.5 EUT OPERATING CONDITIONS

Same as item 4.1.6.

4.3.6 TEST RESULTS

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	MODEL	AMB-2033FTT
FUNDAMENTAL	229.337 Vrms/	POWER	50 004 11-
VOLTAGE/AMPERE	0.634 Arms	FREQUENCY	50.001 Hz
POWER	00 070 \	DOWED FACTOR	0.400
CONSUMPTION	66.973 W	POWER FACTOR	0.460
ENVIRONMENTAL	20 deg. C, 60 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

Harm.	Reading	Limit (A)
Order	Data (A)	Limit (A)
1	-	-
3	0.29	2.30
5	0.27	1.14
7	0.24	0.77
9	0.21	0.40
11	0.17	0.33
13	0.13	0.21
15	0.10	0.15
17	0.06	0.13
19	0.04	0.12
21	0.02	0.11
23	0.02	0.10
25	0.03	0.09
27	0.03	0.08
29	0.03	0.08
31	0.03	0.07
33	0.02	0.07
35	0.01	0.06
37	0.01	0.06
39	0.01	0.06

Harm. Order	Reading Limit (A	
2	0.00	1.08
4	0.00	0.43
6	0.00	0.30
8	0.00	0.23
10	0.00	0.18
12	0.00	0.15
14	0.00	0.13
16	0.00	0.12
18	0.00	0.10
20	0.00	0.09
22	0.00	0.08
24	0.00	0.08
26	0.00	0.07
28	0.00	0.07
30	0.00	0.06
32	0.00	0.06
34	0.00	0.05
36	0.00	0.05
38	0.00	0.05
40	0.00	0.05

NOTE: Steady state values on AC mains are recorded in the table.

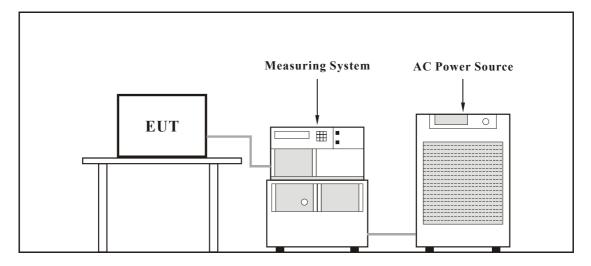
4.4 VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT

4.5 LIMITS OF VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT

TEST ITEM	LIMIT	NOTE
P_{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	200	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3%	dc means relative steady-state voltage change

4.5.1 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
KeyTek, Power Arb Waveform Generator	EP72HF	9508346	April 20, 2002
KIKUSUI AC SWITCHING POWER SUPPLY	PCR 4000L	9508355	April 20, 2002


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.2 TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

4.5.3 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.5.4 EUT OPERATING CONDITIONS

Same as item 4.1.6.

4.5.5 TEST RESULTS

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	MODEL	AWB-2033FTT
INPUT	229.337 Vrms /	POWER	50 004 11-
VOLTAGE/AMPERE	0.634 Arms	FREQUENCY	50.001 Hz
OBSERVATION	0.5	DOWED FACTOR	0.400
PERIOD (Tp)	2 hours	POWER FACTOR	0.460
ENVIRONMENTAL	20 deg. C, 60 % RH,	TECTED DV: Andr. Chang	
CONDITIONS	1005 hPa	TESTED BY: Andy Cheng	

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARKS
P _{st}	0.106	1.0	Pass
P _{lt}	0.092	0.65	Pass
T _{dt} (ms)	0	200	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3%	Pass

NOTE:

- P_{st} means short-term flicker indicator.
 P_{It} means long-term flicker indicator.
 T_{dt} means maximum time that dt exceeds 3 %.
 d_{max} means maximum relative voltage change.
 dc means relative steady-state voltage change.

5 IMMUNITY TEST

5.1 GENERAL DESCRIPTION

Product Standard:	EN 61000-6-2: 2	3-2: 2001			
	IEC 61000-4-2	Electrostatic Discharge – ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B			
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80-1000 MHz, 10V/m, 80% AM (1kHz), Performance Criterion A			
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, Power line: 2kV, Signal line: 1kV, Performance Criterion B			
Basic Standard, Specification, and Performance Criteria:	IEC 61000-4-5	Surge Immunity Test: 1.2/50 us Open Circuit Voltage, 8 /20 us Short Circuit Current, Power Line - 1 kV, line to earth - 2kV, Performance Criterion B			
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test – CS: 0.15-80 MHz, 10V, 80% AM, 1kHz, Performance Criterion A			
	IEC 61000-4-8	Power Frequency Magnetic Field Test, 50 Hz, 30A/m, 60Hz, 30A/m Performance Criterion A			
	IEC 61000-4-11	Voltage Dips: 30% reduction -0.5 period, Performance Criterion B 60% reduction – 5 period, Performance Criterion C 60% reduction – 50 period, Performance Criterion C Voltage Interruptions: >95% reduction – 250 period, Performance Criterion C			

5.2 GENERAL PERFORMANCE CRITERIA DESCRIPTION

CRITERION A	The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
CRITERION B	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
CRITERION C	Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

5.3 EUT OPERATING CONDITION

Same as item 4.1.6.

5.4 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

5.4.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-2 **Discharge Impedance:** 330 ohm / 150 pF

Discharge Voltage: Air Discharge –8 kV (Direct)

Contact Discharge – 4 kV (Direct/Indirect)

Polarity: Positive & Negative

Number of Discharge: Minimum 20 times at each test point

Discharge Mode: Single Discharge **Discharge Period:** 1 second minimum

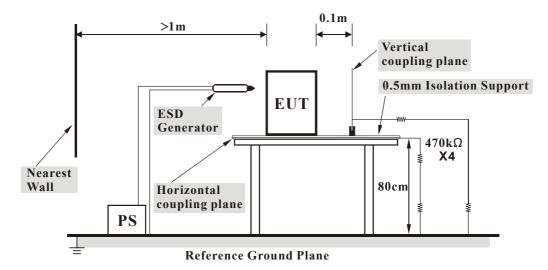
5.4.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED
MANUFACTURER	WIODEL NO.	NO.	UNTIL
KeyTek, ESD Simulator	MZ-15/EC	9902287	Feb. 26, 2002
EM Test ESD Simulator	ESD 30C	0201-28	Aug. 9, 2002
EM Test ESD Discharge	P30C	0201-28	Aug. 9, 2002
Unit	P30C	0201-20	Aug. 9, 2002
EM Test ESD Discharge	P30C-RFCI	0601-07	Aug 0 2002
Unit	F30C-RFCI	0001-07	Aug. 9, 2002

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

5.4.3 TEST PROCEDURE

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the FUT
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge



electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the **V**ertical **C**oupling **P**lane in sufficiently different positions that the four faces of the EUT were completely illuminated. The **VCP** (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

5.4.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **Ground Reference Plane**. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **Horizontal Coupling Plane** (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with $940k\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2:1995, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2:1995, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

5.4.5 TEST RESULTS (A)

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	INPUT POWER	230Vac, 50 Hz
	20 deg. C, 48 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

TEST RESULTS OF DIRECT APPLICATION							
Discharge Level (kV)	Polarity (+/-)	Test Point	Contact Discharge	Air Discharge	Performance Criterion		
8	+/-	1-7	NA	Note (1)	Α		
4	+/-	8, 9	Note (1)	NA	Α		

Description of test point (Please refer to ESD test photo):

1. Control button

2. Junction between panel & case

3. CD-ROM

4. FDD

5. I/O port

6. AC in

7. Power Switch

8. Screws

9. Metal case

TEST RESULTS OF INDIRECT APPLICATION							
Discharge Level (kV)		Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion		
4	+/-	1 ~ 4	Note (1)	Note (1)	A		

Description of test point:

- 1. Left side
- 2. Right side
- 3. Front side
- 4. Rear side

NOTE: (1) There was no change compared with initial operation during the test.

5.4.6 TEST RESULTS (B)

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	2	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	19 deg. C, 46 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

	TEST RESULTS OF DIRECT APPLICATION					
Discharge Level (kV)	Discharge Polarity Level (kV) (+/-) Test Point Contact Discharge Air Discharge Criterion					
8	+/-	1-6	NA	Note (1)	Α	
4	+/-	7-9	Note (1)	NA	Α	

Description of test point (Please refer to ESD test photo):

- 1. Control button
- 3. CD-ROM
- 5. I/O port
- 7. Terminal of DC in
- 9. Screws

- 2. Junction between panel & case
- 4. FDD
- 6. Power Switch
- 8. Metal case

TEST RESULTS OF INDIRECT APPLICATION						
Discharge Level (kV)		Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion	
4	+/-	1 ~ 4	Note (1)	Note (1)	Α	

Description of test point:

- 1. Left side
- 2. Right side
- 3. Front side
- 4. Rear side

NOTE: (1) There was no change compared with initial operation during the test.

5.5 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

5.5.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-3

Frequency Range: 80 MHz - 1000 MHz

Field Strength: 10 V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of fundamental Polarity of Horizontal and Vertical

Antenna:

Test Distance: 3 m
Antenna Height: 1.5m

Dwell Time: at least 3 seconds

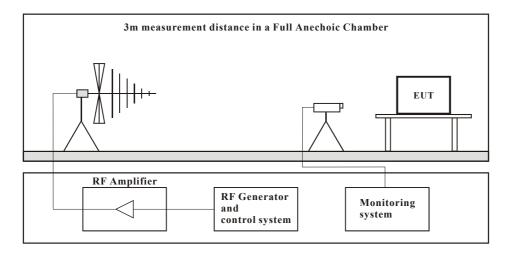
5.5.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL	SERIAL	CALIBRATED
MANUFACTURER	NO.	NO.	UNTIL
ROHDE & SCHWARZ	SMY01	840490/009	Aug. 03, 2002
Signal Generator	SIVITUT	640490/009	Aug. 03, 2002
KALMUS Power Amplifier	LA1000V	091995-1	NA
KALMUS Power Amplifier	757LC	091995-2	NA
HOLADAY Field Probe	HI-4422	89915	Aug. 13, 2002
EMCO BiconiLog Antenna	3141	1001	NA
COMTEST Compact Full	CFAC	ADT-S01	Aug. 17, 2002
Anechoic Chamber (7x3x3 m)	CFAC	AD1-301	Aug. 17, 2002

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.5.3 TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3


- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sinewave. The rate of sweep did not exceed 1.5 x 10^{-3} decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the

EUT to be able to respond.

- d. The field strength level was 3V/m.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

5.5.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3:1995 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3:1995 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

5.5.5 TEST RESULTS

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1, 2	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	25 deg. C, 58 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

Frequency (MHz)	Result	Polarity	Azimuth	Field Strength (V/m)	Obser- vation	Performance Criterion
80 -1000 MHz	PASS	V&H	0	10		
80 -1000 MHz	PASS	V&H	90	10	Note	A
80 -1000 MHz	PASS	V&H	180	10		
80 -1000 MHz	PASS	V&H	270	10		

NOTE: There was no change compared with initial operation during the test.

5.6 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)

5.6.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-4
Test Voltage: Power Line - 2 kV

Signal/Control Line - 1 kV

Polarity: Positive/Negative

Impulse 5 kHz

Frequency:

Impulse 5/50 ns

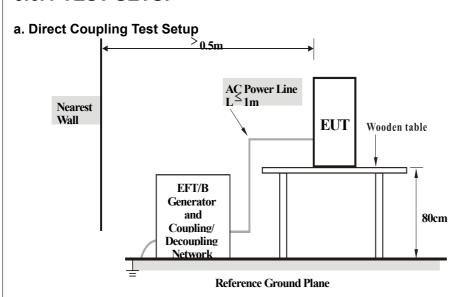
Waveshape:

Burst Duration: 15 ms **Burst Period**: 300 ms

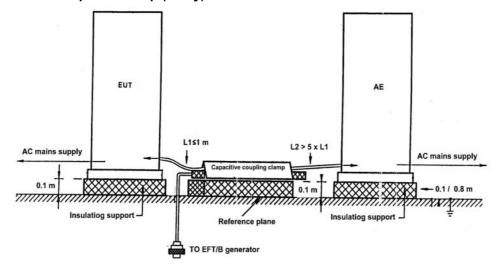
Test Duration: Not less than 1 min.

5.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
KeyTek, EFT Generator	CE-40	9508257	Aug. 28, 2002
KeyTek, Capacitive Clamp	CE-40-CCL	9508259	NA


NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.6.3 TEST PROCEDURE


- a. The EUT was tested with 1000 volt discharges to the AC power input leads and 500 volt discharges to the interconnect cables.
- b. Both positive and negative polarity discharges were applied.
- c. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- d. The duration time of each test sequential was 1 minute.
- e. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

5.6.4 TEST SETUP

b. Capacitive Clamp Test Setup (if any)

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

ADT CORP
FLOOR STANDING EQUIPMENT The EUT installed in a representative system as described in section 7 of IEC 61000-4-4:1995 and its
cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

5.6.5 TEST RESULTS (A)

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	21 deg. C, 50 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
L1	+/-	2	Note	В
L2	+/-	2	Note	В
Ground	+/-	2	Note	В
Signal/Control Line	+/-	1	Note	В

NOTE: The transmission of data for LAN port was stopped during the test, but self-recoverable after the test.

5.6.6 TEST RESULTS (B)

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	2	INPUT POWER	DC 24V
ENVIRONMENTAL CONDITIONS	19 deg. C, 52 % RH,	TESTED BY: Andy Cheng	

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
Signal/Control Line	+/-	1	Note	В

NOTE: The transmission of data for LAN port was stopped during the test, but self-recoverable after the test.

5.7 SURGE IMMUNITY TEST

5.7.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-5 **Wave-Shape:** Combination Wave

1.2/50 us Open Circuit Voltage

8 /20 us Short Circuit Current

Test Voltage: Power Line - 1 kV / 2 kV

Surge L1-L2 / L1-G / L2-G / L1, L2-G

Input/Output:

Generator Source 2 ohm between networks

Impedance: 12 ohm between network and ground

Polarity: Positive/Negative

Phase Angle: 0° /90°/270°

Pulse Repetition 1 time / min. (maximum)

Rate:

Number of Tests: 5 positive and 5 negative at selected

points

5.7.2 TEST INSTRUMENTS

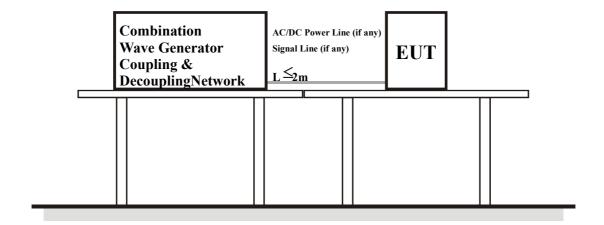
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATION UNTIL
KeyTek, Control Center	E103	9508347	NA
KeyTek,Surge Combination Wave	E501A	9508349	Aug. 28, 2002
KeyTek, Surge Coupler/Decoupler	E551	9508350	Aug. 28, 2002
KeyTek External Coupler/Decoupler for Telecom Lines	CM-TELCD	9906194	NA
KeyTek I/O Signal Line Coupler/Decoupler	CM-I/OCD	9907177	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.7.3 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).


b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT:

The surge is applied to the lines via the capacitive coupling. The coupling / decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

c. For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

5.7.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

5.7.5 TEST RESULTS

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	18 deg. C, 50 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

VOLTAGE (kV)	TEST POINT	POLARITY (+/-)	OBSERVATION	PERFORMANCE CRITERION
1	L1-L2	+/-	NOTE	Α
2	L1-G	+/-	NOTE	А
2	L2-G	+/-	NOTE	Α
2	L1, L2-G	+/-	NOTE	Α

NOTE: There was no change compared with initial operation during the test.

5.8 IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS (CS)

5.8.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-6 **Frequency Range:** 0.15 MHz - 80 MHz

Field Strength: 10 V_{r.m.s.}

Modulation: 1kHz Sine Wave, 80%, AM Modulation

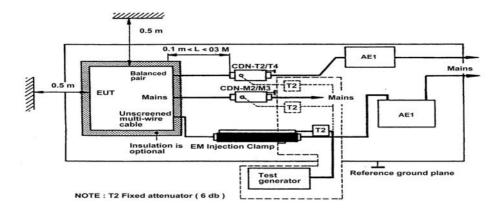
Frequency Step: 1 % of fundamental

Coupled Cable: Power Mains, Unshielded

Coupling Device: CDN-M3 (3 wires)/CDN-M2 (2wires), CLAMP

5.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ Signal Generator	SMY01	848027/030	Feb. 15, 2002
COMTEST Power Amplifier	GPA301	BCS320-1038	NA
FCC Coupling Decoupling Network	FCC-801- M3-25	48	NA
FCC Coupling Decoupling Network	FCC-801- M2-16A	01047	NA
FISCHER CUSTOM COMMUNICATIONS EM Injection Clamp	FCC-203I	50	NA
FCC Coupling Decoupling Network	FCC-801- M1-25	17	NA
BOONTON RF Voltage Meter	9200B	331801AE	Aug. 03, 2002
SCHAFFNER Coupling Decoupling Network	CDN T400	16909	NA
SCHAFFNER Arranging adapter set for RJ45	ADR T444	NA	NA
SCHAFFNER Arranging adapter set for RJ11	ADR T411	NA	NA


NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.8.3 TEST PROCEDURE

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.
- c. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate shall not exceed 1.5 x 10⁻³ decades/s. The step size shall not exceed 1 % of the start and thereafter 1 % of the preceding frequency value where the frequency is swept incrementally.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, shall be analyzed separately.
- e. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

5.8.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE: **FLOOR-STANDING EQUIPMENT** The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

5.8.5 TEST RESULTS (A)

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL CONDITIONS	19 deg. C, 60 % RH,	TESTED BY: Andy	Cheng

FREQUENCY (MHz)	RESULTS	FIELD STRENGTH (Vr.m.s.)	CABLE	OBSER- VATION	INJECTION METHOD	PERFORMANCE CRITERION
0.15 –80 MHz	PASS	10	AC power line (1.8m)	Note (1)	Α	CDN-M3
0.15 –80 MHz	PASS	10	LAN (10m)	Note (1)	А	CLAMP

NOTE: (1) There was no change compared with initial operation during the test.

5.8.6 TEST RESULTS (B)

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	2	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	19 deg. C, 60 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

FREQUENCY (MHz)	RESULTS	FIELD STRENGTH (Vr.m.s.)	CABLE	OBSER- VATION	INJECTION METHOD	PERFORMANCE CRITERION
0.15 –80 MHz	PASS	10	AC power line (1.8m)	Note (1)	Α	CDN-M2
0.15 –80 MHz	PASS	10	LAN (10m)	Note (1)	А	CLAMP

NOTE: (1) There was no change compared with initial operation during the test.

5.9 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

5.9.1 TEST SPECIFICATION

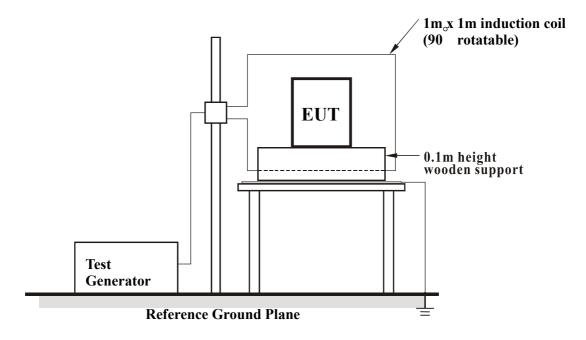
Basic Standard: IEC 61000-4-8 **Frequency Range:** 50Hz /60Hz **Field Strength:** 30 A/m

Observation Time: 1 minute

Inductance Coil: Rectangular type, 1mx1m

5.9.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
HAEFELY Magnetic Field Tester	MAG 100.1	083794-06	NA
COMBINOVA Magnetic Field Meter	MFM10	224	Oct. 24, 2002


NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.9.3 TEST PROCEDURE

- a. The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the FUT
- c. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

5.9.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m \times 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

5.9.5 TEST RESULTS

EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1, 2	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	21 deg. C, 50 % RH,	TESTED BV: Andy	Cheng
CONDITIONS	1005 hPa	TESTED BY: Andy Cheng	

DIRECTION	RESULTS	OBSERVATION	PERFORMANCE CRITERION
X	PASS	Note	A
Υ	PASS	Note	A
Z	PASS	Note	A

NOTE: There was no change compared with the initial operation during the test.

5.10 VOLTAGE DIP/SHORT INTERRUPTIONS/VOLTAGE VARIATIONS (DIP) IMMUNITY TEST

5.10.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-11

Test Duration Time: Minimum three test events in sequence

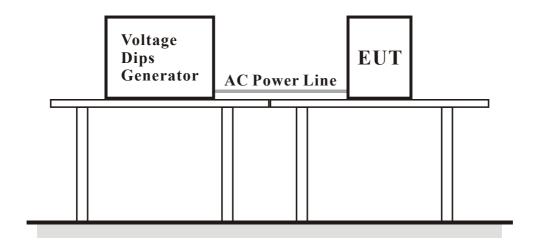
Interval between Event: Minimum ten seconds

Phase Angle: 0°/45°/90°/135°/180°/225°/270°/315°/360°

Test Cycle: 3 times

5.10.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
HAEFELY Mains Interference Simulator	PLINE 1610	083690-17	March 2, 2002


NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.10.3 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of tree dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

5.10.4 TEST SETUP

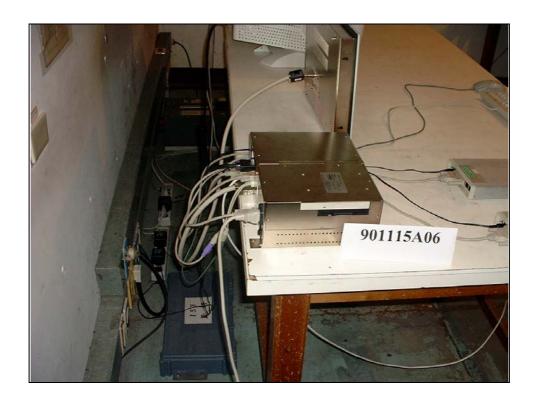
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

5.10.5 TEST RESULTS

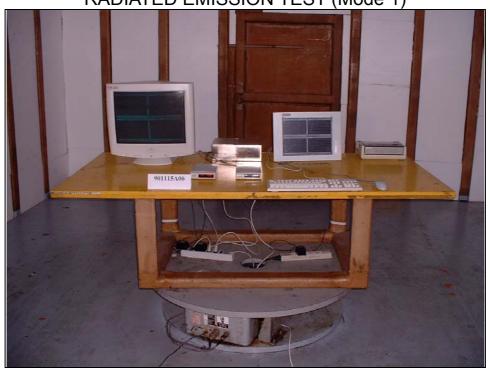
EUT	PANEL PC	MODEL	AMB-2053HTT
MODE	1	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	21 deg. C, 55 % RH,	TESTED BY: Andy Cheng	
CONDITIONS	1005 hPa		

VOLTAGE % REDUCTION	PERIODS	RESULTS	OBSERVATION	PERFORMANCE CRITERION
30	0.5	PASS	Note(1)	Α
60	5	PASS	Note(1)	Α
60	50	PASS	Note(1)	Α
>95	250	PASS	Note(2)	С

 $\textbf{NOTES}{:}(1) \ There \ was \ no \ change \ compared \ with \ initial \ operation \ during \ the \ test.$

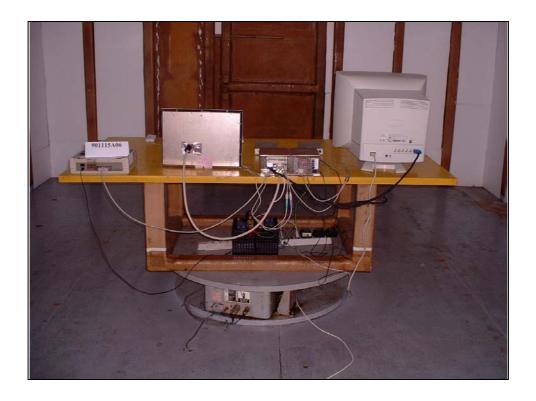

(2) The EUT shut down.

6 PHOTOGRAPHS OF THE TEST CONFIGURATION

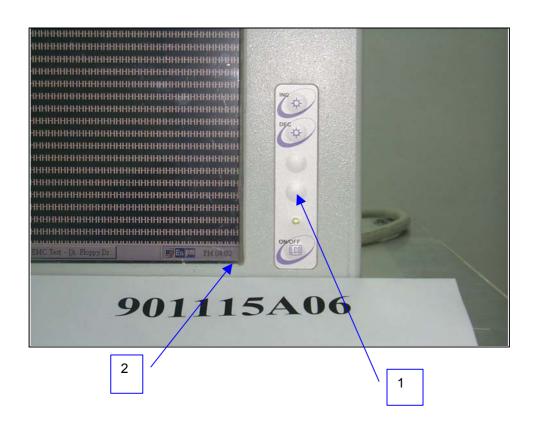




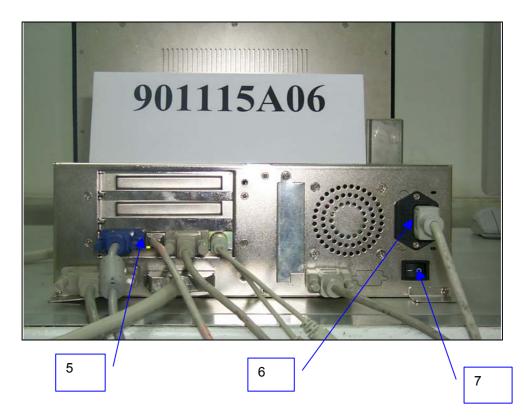
RADIATED EMISSION TEST (Mode 1)

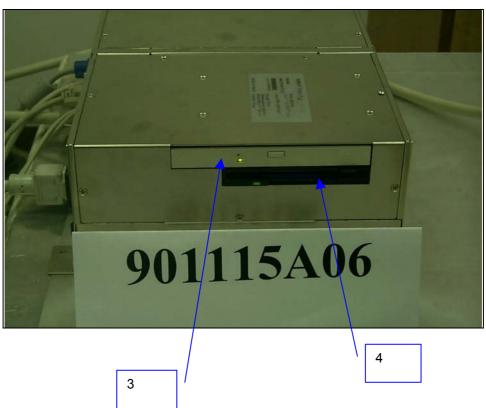


(Mode 2)

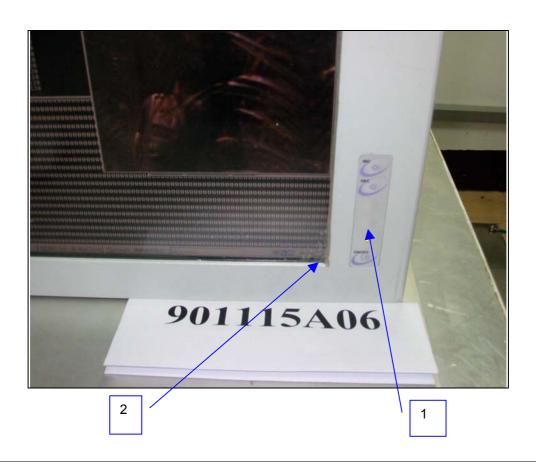

HARMONICS EMISSION TEST & VOLTAGE FLUCTUATIONS AND FLICKER TEST (Mode 1)

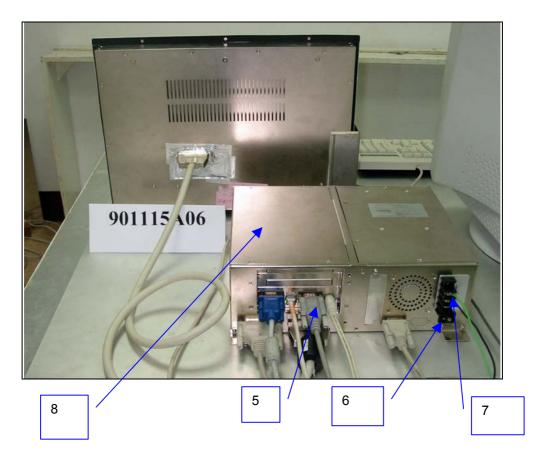
ESD TEST (Mode 1)

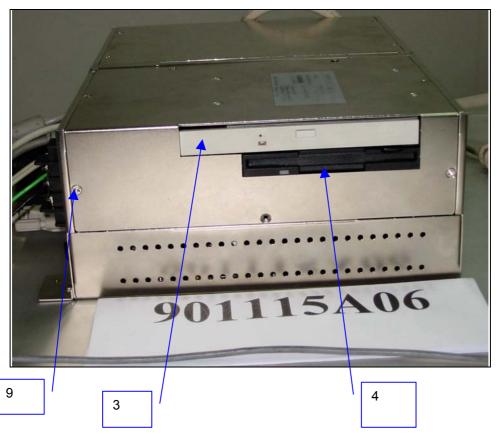


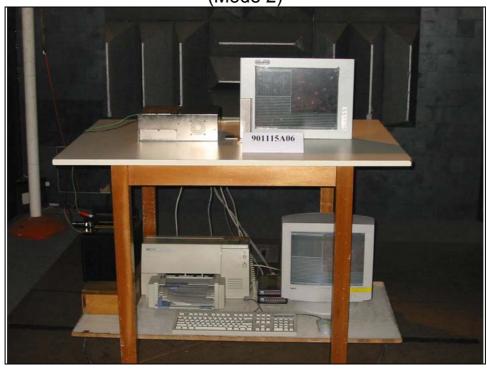

8

9






(Mode 2)


RS TEST (Mode 1)


(Mode 2)

EFT TEST (Mode 1)

(Mode 2)

SURGE TEST (Mode 1)

CONDUCTED SUSCEPTIBILITY TEST (Mode 1)

(Mode 2)

POWER-FREQUENCY MAGNETIC FIELDS TEST (Mode 1)

(Mode 2)

VOLTAGE DIPS AND INTERRUPTIONS TEST (Mode 1)

7 APPENDIX - INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025, Guide 25 or EN 45001:

USA FCC, NVLAP, UL TUV Rheinland

Japan VCCI New Zealand MoC

Norway NEMKO, DNV

Canada INDUSTRY CANADA

R.O.C. CNLA, BSMI

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

 Lin Kou EMC Lab:
 Hsin Chu EMC Lab:

 Tel: 886-2-26052180
 Tel: 886-35-935343

 Fax: 886-2-26052943
 Fax: 886-35-935342

Lin Kou Safety Lab: Lin Kou RF & Telecom Lab.

Tel: 886-2-26093195 Tel: 886-3-3270910 Fax: 886-2-26093184 Fax: 886-3-3270892

Email: service@mail.adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.