SPORTON LAB.

VERIFICATION OF COMPLIANCE

 Equipment : Rugged Tablet Computer
Model No.
Applicant : AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Taipei, Taiwan

DECLARE THAT :

The equipment is in accordance with the procedures are given in ANSI C63.4-2009 and the energy emitted by this equipment was **Passed CISPR PUB. 22** and **FCC Part 15 Subpart B** in both radiated and conducted emissions **Class B** limits. The test was carried out on **Jun. 06, 2015** at **SPORTON INTERNATIONAL INC.** LAB.

HFRF

Kero Kuo Assistant Manager

FCC EMC TEST REPORT

Authorized under **D**eclaration **o**f **C**onformity

according to

47 CFR FCC Rules and Regulations Part 15 Subpart B, Class B Digital Device

- Equipment : Rugged Tablet Computer
- Model No. : xRTC-600Ax (x Where x may be any combination of alphanumeric characters or "-"or blank.)
- Filing Type : Declaration of Conformity
- Applicant : AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Taipei, Taiwan
 - The test result refers exclusively to the test presented test model / sample.
 - Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
 - Certificate or Test Report must not be used by the applicant to claim the product in this test report endorsement by TAF or any agency of U.S. government.

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan, R.O.C.

Table of Contents

VERIFICATION OF COMPLIANCE	1
1. General Description of Equipment under Test	2
1.1 Applicant	2
1.2 Manufacturer	2
1.3 Basic Description of Equipment under Test	2
1.4 Feature of Equipment under Test	2
2. Test Configuration of Equipment under Test	3
2.1 Test Manner	3
2.2 Description of Test System	4
2.3 Connection Diagram of Test System for Radiation Emission	5
3. Test Software	6
4. General Information of Test	8
4.1 Test Facility	8
4.2 Uncertainty of Test Site	8
4.3 Test Voltage	8
4.4 Standard for Methods of Measurement	8
4.5 Test in Compliance with	8
4.6 Frequency Range Investigated	8
5. Test of Conducted Powerline	9
5.1 Test Procedures	9
5.2 Typical Test Setup Layout of Conducted Powerline	9
5.3 Test Result of AC Powerline Conducted Emission	10
6. Test of Radiated Emission	12
6.1 Test Procedures	12
6.2 Test Result of Radiated Emission (Below 1GHz)	13
6.3 Test Result of Radiated Emission (Above 1GHz)	17
7. List of Measuring Equipment Used	19
Appendix A. TEST PHOTOS	

Appendix B. Photographs of EUT

History of this test report

Report No.	Version	Description	Issued Date
FD552692	Rev. 02	Initial issue of report	Jun. 24, 2015

Verification No. : FD552692

VERIFICATION OF COMPLIANCE

Authorized under Declaration of Conformity

according to

47 CFR FCC Rules and Regulations Part 15 Subpart B, Class B Digital Device

- Equipment : Rugged Tablet Computer
- Model No. : xRTC-600Ax (x Where x may be any combination of alphanumeric characters or "-"or blank.)
- Applicant : AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Taipei, Taiwan

I HEREBY CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4 - 2009** and the energy emitted by this equipment were **passed CISPR PUB. 22** and **FCC Part 15 Subpart B** in both radiated and conducted emission **Class B** limits. The product sample received on May 26, 2015 and completely tested on <u>Jun. 06, 2015</u> at **SPORTON International Inc.** LAB

Kero Kuo / Assistant Manager

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan, R.O.C.

1. General Description of Equipment under Test

1.1 Applicant

AAEON Technology Inc.

5F, No. 135, Lane 235, Pao Chiao Rd., Taipei, Taiwan

1.2 Manufacturer

Same as 1.1

1.3 Basic Description of Equipment under Test

Equipment	:	Rugged Tablet Computer
Trade Name		AAEON
Model No.	:	xRTC-600Ax (x - Where x may be any combination of alphanumeric
		characters or "-"or blank.)
Power Supply Type	:	Switching
AC Power Type	:	Non-shielded, 1.8 m, 3 pin
DC Power Cable	:	Non-shielded, 1.8 m

The maximum operating frequency : 2.4GHz

1.4 Feature of Equipment under Test

Accessories							
	Brand Name	L.T.E.	Model Name	LTE24E-S2-2			
AC Adapter	Power Rating	I/P: 100-240V===1A ; O/P: 12V===2A					
Detter 1	Brand Name	Getac	Model Name	RTC600S			
Battery	Power Rating	7.4 Vdc, 1530 mAh	Туре	Li-ion, 2S1P			
Detter ()	Brand Name	Getac	Model Name	RTC600H			
Battery 2	Power Rating	7.4 Vdc, 1530 mAh	Туре	Li-ion, 2S1P			
LCD Panel	Brand Name	TIANMA	Model Name	TM057JDHP04-00			

Please refer to user manual.

2. Test Configuration of Equipment under Test

2.1 Test Manner

 a. The EUT has been associated with supporting units and peripherals pursuant to ANSI C63.4-2009 and configuration operated in a manner which tended to maximize its emission characteristics in a typical application.

b.	The eq	uipment	under te	st were	performed	the follo	wing test	modes:
~.	1110 09	aipinoin		00, 10010	pononiou	110 10110	ming toot	

Test Items	Description of test modes					
	Mode 1. R/W, H pattern, play mp3, Headset, WiFi (2.4G) + BT, USB link PC,					
	Adapter, FDD band 1 Link					
	Mode 2. Play Video (mp4), Headset, WiFi (2.4G) + BT, Adapter, FDD band 2 Idle					
	Mode 3. Play Photo + mp3, speaker, WiFi (2.4G) + RFID + BT, Adapter,					
AC Conducted	FDD band 5 Link					
Emission	Mode 4. CCD, Headset, WiFi (2.4G) + BT, Adapter, FDD band 8 Link					
	Mode 5. GPS, Headset, WiFi (2.4G) + BT, Adapter, Horizontal, FDD band 1 Link					
	Mode 6. Scan, Headset, WiFi (2.4G) + BT, Adapter, FDD band 1 Link					
	For operating mode 1 is the worst case and it was record in this test report.					
	Mode 1. R/W, H pattern, play mp3, Headset, WiFi (2.4G) + BT, USB link PC,					
	Adapter, FDD band 1 Link					
	Mode 2. Play Video (mp4), Headset, WiFi (2.4G) + BT, Adapter, FDD band 2 Idle					
	Mode 3. Play Photo + mp3, speaker, WiFi (2.4G) + RFID + BT, Adapter,					
Radiated	FDD band 5 Link					
Emissions	Mode 4. CCD, Headset, WiFi (2.4G) + BT, Adapter, FDD band 8 Link					
	Mode 5. GPS, Headset, WiFi (2.4G) + BT, Adapter, Horizontal, FDD band 1 Link					
	Mode 6. Scan, Headset, WiFi (2.4G) + BT, Adapter, FDD band 1 Link					
	< below 1GHz and above 1GHz >					
	For operating mode 1 is the worst case and it was record in this test report.					

c. Frequency range investigated: Conducted 150 kHz to 30 MHz, Radiated 30 MHz to 13,000 MHz

2.2 Description of Test System

< For Conducted Emission and Radiated Emission Below 1GHz >

No.	Peripheral	Manufacturer	Model Number	FCC ID	Cable / Spec. Description
For L	ocal				
1	PC	Lenovo	C61	DoC	micro USB Cable, D-Shielded, 1.0m
2	LCD MONITOR"19"	DELL	E198WFPF	DoC	D-SUB Cable, D-Shielded, 1.8m
3	Modem	ACEEX	DM1414	IFAXDM1414	RS-232 Cable, D-Shielded, 1.15m
4	Printer (DJ400)	HP	C2642A	B94C2642X	LPT Cable, D-Shielded, 1.2m
5	Keyboard	Lenovo	KU-0225	DoC	USB Cable, AL-F-Shielded, 1.8m
6	MOUSE	Lenovo	M-U0025-O	DoC	USB Cable, AL-F-Shielded, 1.8m
7	Headset	i-Acon	HOH-323-BK		Audio Cable, Non-Shielded, 2.0m
8	microSD	SanDisk	4GB		
9	USB 2.0 Flash Disk	TRANSCEND	JetFlash V85	DoC	
10	SIM CARD	Anritsu			
For F	Remote				
-	NB	DELL	E5520	DoC	
-	AP ROUTER	D-LINK	DIR-600B5	KA2DIR600B5	
-	Base Station	Anritsu	MT8820C		

< For Radiated Emission Above 1GHz >

No.	Peripheral	Manufacturer	Model Number	FCC ID	Cable / Spec. Description		
For l	For Local						
1	PC	PC	DCTA	DoC	micro USB Cable, D-Shielded, 0.5m		
2	LCD MONITO	DELL	2408WFPb	DoC	D-SUB Cable, D-Shielded, 1.8m		
3	Modem	ACEEX	DM1414	IFAXDM1414	RS-232 Cable, D-Shielded, 1.15m		
4	Printer (DJ400)	HP	C2642A	B94C2642X	LPT Cable, D-Shielded, 1.2m		
5	Keyboard	DELL	SK-8175	DoC	USB Cable, AL-F-Shielded, 1.8m		
6	MOUSE	DELL	MOC5UO	DoC	USB Cable, AL-F-Shielded, 1.8m		
7	Headset	KINYO	EM-15		Audio Cable, Non-Shielded, 2.0m		
8	microSD	SanDisk	4GB				
9	USB 3.0 Flash Disk	PQI	U821V	DoC			
10	SIM CARD	Anritsu	N/A				
For F	Remote						
-	NoteBook	DELL	E5520	DoC			
-	AP ROUTER	D-LINK	DIR-600B5	KA2DIR600B5			
-	Base Station	Anritsu	MT8820C				

2.3 Connection Diagram of Test System for Radiation Emission

3. Test Software

<For Conducted Emission and Radiated Emission Below 1GHz >

An executive program, "EMIprogram.exe" under Win 7 (PC) and Android 4.2.2 (EUT), which generates a complete line of continuously repeating "H" pattern was used as the test software.

An executive program was executed as follows:

- a. Turn on the power of all equipment.
- b. The PC reads the test program " EMIprogram.exe " from the hard disk drive and runs it.
- c. The PC sends "H" messages to the LCD monitor, and the LCD monitor displays "H" patterns on the screen.
- d. The PC sends "H" messages to the printer, and then the printer prints them on the paper.
- e. The PC sends messages to modem.
- f. Repeat the steps from c to e.

At the same time, the following programs were executed:

- a. The EUT opens the test program " ScreenTest H Pattern " from the hard disk drive and runs it.
- b. The EUT sends "H" messages to the LCD monitor, and the LCD monitor displays "H" patterns on the screen.
- The EUT opens "WiFi" to link with the remote workstation (wireless AP) to maintain the connection via WiFi.
- The EUT opens the "Bluetooth" to link with the remote workstation (Notebook) to maintain the connection via Bluetooth.
- The EUT turned on 3G function to link with the remote workstation (Base station) to maintain the connection.
- The EUT plays MP3 music from Micro SD card via Headset.
- The PC runs "Copy Data" to read and write function and convey to EUT, USB Flash Disk and Micro SD Card.

<For Radiated Emission Above 1GHz >

An executive program, "EMIprogram.exe" under Win 7 (PC) and Android 4.2.2 (EUT), which generates a complete line of continuously repeating "H" pattern was used as the test software.

An executive program was executed as follows:

- a. Turn on the power of all equipment.
- b. The PC reads the test program " EMIprogram.exe " from the hard disk drive and runs it.
- c. The PC sends "H" messages to the LCD monitor, and the LCD monitor displays "H" patterns on the screen.
- d. The PC sends "H" messages to the printer, and then the printer prints them on the paper.
- e. The PC sends messages to modem.
- f. Repeat the steps from c to e.

At the same time, the following programs were executed:

- a. The EUT opens the test program " ScreenTest H Pattern " from the hard disk drive and runs it.
- b. The EUT sends "H" messages to the LCD monitor, and the LCD monitor displays "H" patterns on the screen.
- The EUT opens "WiFi" to link with the remote workstation (wireless AP) to maintain the connection via WiFi.
- The EUT opens the "Bluetooth" to link with the remote workstation (Notebook) to maintain the connection via Bluetooth.
- The EUT turned on 3G function to link with the remote workstation (Base station) to maintain the connection.
- The EUT plays MP3 music from Micro SD card via Headset.
- The PC runs "Copy Data" to read and write function and convey to EUT, USB Flash Disk and Micro SD Card.

4. General Information of Test

4.1 Test Facility

Test Site Location	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-4739
		FAX : 886-2-2631-9740
Test Site No.	:	CO01-NH / OS03-NH
Test Site Location	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District,
		Taoyuan City, Taiwan, R.O.C.
		TEL : 886-3-327-3456
Test Site No.	:	FAX : 886-3-327-0973
Test Site No.	:	03CH04-HY

4.2 Uncertainty of Test Site

Test Items	Test Site No.	Uncertainty	Remark
Conducted Emissions	CO01-NH	± 2.6dB	Confidence levels of 95%
Radiated Emissions below 1GHz	OS03-NH	± 2.9dB	Confidence levels of 95%
Radiated Emissions above 1GHz	03CH04-HY	± 4.8dB	Confidence levels of 95%

4.3 Test Voltage

120VAC / 60Hz

4.4 Standard for Methods of Measurement

ANSI C63.4-2009

4.5 Test in Compliance with

CISPR PUB. 22 and FCC Part 15 Subpart B

4.6 Frequency Range Investigated

- a. Conducted emission test: from 150 kHz to 30 MHz
- b. Radiated emission test: from 30 MHz to 13,000 MHz
 - The test distance of radiated emission from antenna to EUT is 10 M (from 30MHz ~ 1GHz)
 - The test distance of radiated emission from antenna to EUT is 3 M (from 1GHz ~ 13GHz)

5. Test of Conducted Powerline

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz and return leads of the EUT according to the methods defined in ANSI C63.4-2009 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meter above the ground plane. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

5.1 Test Procedures

- a. The EUT was warmed up for 15 minutes before testing started.
- b. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- c. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d. All the support units are connected to the other LISN.
- e. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- f. The CISPR states that a 50 ohm, 50 micro henry LISN should be used.
- g. Both sides of AC line were checked for maximum conducted interference.
- h. The frequency range from 150 kHz to 30 MHz was searched.
- i. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

5.2 Typical Test Setup Layout of Conducted Powerline

- a. AMN is 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- b. EUT is connected to one artificial mains network (AMN).
- c. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- d. Rear of EUT to be flushed with rear of table top.
- e. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- f. If cables, which hang closer than 40 cm to the horizontal metal ground plane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- g. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- h. Cables of hand operated devices, such as keyboards, mice, etc. shall be placed as for normal usage.

Test Mode	Mode 1	Test Site No.	CO01-NH		
Test Frequency	0.15 MHz ~ 30 MHz	Test Engineer	Willy		
Temperature	26 ℃	Relative Humidity	53 %		
Note: 1. Corrected I	Reading (dB μ V) = LISN Factor +	Cable Loss + Read Leve	el = Level		
2. All emissions not reported here are more than 10 dB below the prescribed limit.					
■The test was passed at the minimum margin that marked by the frame in the following data					

5.3 Test Result of AC Powerline Conducted Emission

Line

		Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
		MHz	dBuV	dB	dBuV	dBuV	dB	dB	-
1		0.175	49.56	-15.16	64.72	38.99	10.47	0.10	QP
2		0.175	41.30	-13.42	54.72	30.73	10.47	0.10	AVERAGE
3	1	0.347	35.76	-13.27	49.03	25.18	10.48	0.10	AVERAGE
4	1	0.347	41.78	-17.25	59.03	31.20	10.48	0.10	QP
5 @	3	0.459	35.45	-11.26	46.71	24.86	10.48	0.11	AVERAGE
6		0.459	40.74	-15.97	56.71	30.15	10.48	0.11	QP
7	1	0.573	30.62	-15.38	46.00	20.00	10.48	0.14	AVERAGE
8		0.573	38.02	-17.98	56.00	27.40	10.48	0.14	QP
9		5.805	31.09	-28.91	60.00	20.22	10.57	0.30	QP
10	1	5.805	24.71	-25.29	50.00	13.84	10.57	0.30	AVERAGE
11	1:	9.122	27.00	-23.00	50.00	15.83	10.79	0.38	AVERAGE
12	1	9.122	32.72	-27.28	60.00	21.55	10.79	0.38	OP

Neutral

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.170	43.20	-21.74	64.94	32.96	10.14	0.10	QP
2	0.170	31.13	-23.81	54.94	20.89	10.14	0.10	AVERAGE
3	0.211	38.20	-24.98	63.18	27.97	10.13	0.10	QP
4	0.211	27.89	-25.29	53.18	17.66	10.13	0.10	AVERAGE
5	0.421	26.49	-20.93	47.42	16.27	10.12	0.11	AVERAGE
6	0.421	34.81	-22.61	57.42	24.59	10.12	0.11	QP
7	0.491	39.47	-16.68	56.14	29.22	10.12	0.12	QP
8	0.491	31.95	-14.20	46.14	21.70	10.12	0.12	AVERAGE
9	1.043	30.57	-25.43	56.00	20.24	10.13	0.20	QP
10	1.043	23.60	-22.40	46.00	13.27	10.13	0.20	AVERAGE
11	15.885	26.32	-23.68	50.00	15.57	10.43	0.32	AVERAGE
12	15.885	32.70	-27.30	60.00	21.95	10.43	0.32	QP

6. Test of Radiated Emission

Radiated emissions from 30 MHz to 13,000 MHz were measured with a bandwidth of 120 kHz for 30 MHz to 1000 MHz and 1 MHz for above 1GHz according to the methods defines in ANSI C63.4-2009. The EUT was placed on a nonmetallic stand, 0.8 meter above the ground plane. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.

6.1 Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set at 3m(above 1GHz) and 10m(below 1GHz) from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. The FCC Part 15.109 (g) permit parties seeking to authorize a digital device to choose to demonstrate that the device complies with either the Part 15 standards or the international standards found in Publication 22 of the International Special Committee on Radio Interference (CISPR)
- i. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

6.2 Test Result of Radiated Emission (Below 1GHz)

Test mode	Mode 1	Test Site No.	OS03-NH					
Test frequency	30 MHz ~ 1000 MHz	Test Engineer	Alan					
Temperature	23 °C	Relative Humidity	52 %					
Note: 1. Emission le	evel (dB μ V/m) = 20 log Emission I	evel (µV/m)						
2. Corrected	2. Corrected Reading : Probe Factor + Cable Loss + Read Level – Preamp Factor = Level							
■The test was passed at the minimum margin that marked by the frame in the following data								

Vertical

				Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	1	cm	deg
1	6	33.110	24.07	-5.93	30.00	35.13	16.44	0.94	28.44	QP	100	68
2		69.100	17.54	-12.46	30.00	38.03	6.50	1.38	28.37	Peak		
3		120.830	21.35	-8.65	30.00	35.00	12.70	1.86	28.21	Peak		0000
4		198.330	15.36	-14.64	30.00	31.40	9.43	2.46	27.93	Peak		

	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos
12	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	232.800	22.56	-14.44	37.00	36.41	11.40	2.63	27.88	Peak		
2	336.000	25.83	-11.17	37.00	36.41	14.16	3.29	28.03	Peak		
3	392.000	25.46	-11.54	37.00	34.79	15.53	3.58	28.44	Peak		

Horizontal

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-		deg
1	58.720	13.64	-16.36	30.00	34.20	6.54	1.29	28.39	Peak		
2	119.960	23.16	-6.84	30.00	36.80	12.73	1.85	28.22	Peak		
3	154.390	16.70	-13.30	30.00	32.27	10.39	2.13	28.09	Peak		
4	198.160	13.35	-16.65	30.00	29.41	9.43	2.45	27.94	Peak		

Horizontal

	From	Lorral	Over	Limit	Read	Antenna	Cable	Preamp	Domank	Ant	Table
	rreq	Level	LIMIC	Line	rever	Factor	LOSS	ractor	Renark	POS	POB
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	228.800	23.49	-6.51	30.00	37.60	11.17	2.60	27.88	Peak		
2	328.000	26.25	-10.75	37.00	37.00	13.97	3.26	27.98	Peak		
3	408.800	21.20	-15.80	37.00	30.20	15.89	3.66	28.55	Peak		

6.3 Test Result of Radiated Emission (Above 1GHz)

Test mode	Mode 1	Test Site No.	03CH04-HY				
Test frequency	1 GHz ~ 13 GHz	Test Engineer	Kevin				
Temperature	24 °C	Relative Humidity	58 %				
Note: 1. Emission le	evel (dB μ V/m) = 20 log Emission I	evel (µV/m)					
2. Corrected Reading : Probe Factor + Cable Loss + Read Level – Preamp Factor = Level							
■The test was passed at the minimum margin that marked by the frame in the following data							

Vertical

			Over	Limit	Dead	Intonna	Dreamo	Cable	Ant	Table	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Pos	Pos	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg	
1	1132.000	47.47	-26.53	74.00	55.21	24.89	34.56	1.94			Peak
2	1398.000	48.88	-25.12	74.00	55.27	25.61	34.14	2.14			Peak
3	1798.000	48.67	-25.33	74.00	53.95	26.20	33.82	2.34			Peak
4	2198.000	45.33	-28.67	74.00	49.81	26.82	33.90	2.61			Peak
5	2900.000	47.03	-26.97	74.00	50.10	28.46	34.50	2.97			Peak
6	2996.000	52.58	-21.42	74.00	55.48	28.66	34.55	2.99	100	358	Peak
7	2996.000	41.24	-12.76	54.00	44.14	28.66	34.55	2,99	100	358	Average

Horizontal

			Over	Limit	Read	Antenna	Preamp	Cable	Ant	Table	
	Freq	Level	Limit	Line dBuV/m	Level	Factor	Factor	Loss	Pos	Pos	Remark
	MHz	dBuV/m	dB		dBuV	dB/m	dB	dB	cm	deg	
1	1196.000	45.97	-28.03	74.00	53.34	25.08	34.45	1.99		1222	Peak
2	1494.000	43.51	-30.49	74.00	49.41	25.90	34.03	2.22			Peak
3	1798.000	43.51	-30.49	74.00	48.79	26.20	33.82	2.34			Peak
4	2198.000	48.27	-25.73	74.00	52.75	26.82	33.90	2.61			Peak
5	2598.000	47.36	-26.64	74.00	51.02	27.74	34.28	2.88			Peak
6	2990.000	45.46	-28.54	74.00	48.36	28.66	34.55	2.99			Peak

7. List of Measuring Equipment Used

< Conducted Emission >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Receiver	R&S	ESCS 30	100357	0 kHz - 2 75 CHz	lan 21 2015	Conduction
Receiver	Rao	L000 30	100337	3 KHZ - 2.73 OHZ	Jan. 21, 2015	(CO01-NH)
LICN			06/10024		Dec. 04, 2014	Conduction
LIGIN	SCHAFFNER	ININD41	00/10024	9KHZ - SUIVIHZ	Dec. 04, 2014	(CO01-NH)
LICN	KYODITSU		9 1010 15		NCP	Conduction
LIGIN	KTOKI130	KINV-407	0-1010-15	9KHZ - 30101HZ	NCK	(CO01-NH)
Dowor Filtor	CORCOM	MP12020	NI/A	204*2	NCP	Conduction
Power Filler	CORCOM	WIR 12030	IN/A	30A 2	NCK	(CO01-NH)
RE Cable CON	Suhner	PC222/11	CB004		Doc 10 2014	Conduction
RF Cable-CON	Switzerland	RG223/0	CB004	9KHZ - SUIVIHZ	Dec. 10, 2014	(CO01-NH)

% Calibration Interval of instruments listed above is one year. NCR: Non-Calibration required.

< Radiated Emission below 1GHz >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Open Area Test Site	SPORTON	OATS-10	OS03-NH	30 MHz - 1 GHz 10m, 3m	Nov. 09, 2014	Radiation (OS03-NH)
Amplifier	HP	8447D	2944A08292	0.1 MHz - 1.3 GHz	May 11, 2015	Radiation (OS03-NH)
Spectrum Analyzer	Advantest	R3261C	81720147	9 kHz – 2.6 GHz	Nov. 26, 2014	Radiation (OS03-NH)
Receiver	R&S	ESCS 30	838251/002	9 kHz - 2.75 GHz	Nov. 07, 2014	Radiation (OS03-NH)
Bilog Antenna	CHASE	CBL6112D	25234	30 MHz - 2 GHz	Feb. 28, 2015	Radiation (OS03-NH)
Turn Table	EMCO	2080	9805-2065	0 - 360 degree	NCR	Radiation (OS03-NH)
Antenna Mast	EMCO	2075	9804-2151	1 m - 4 m	NCR	Radiation (OS03-NH)
RF Cable-R10m	HSCN	RG213U	2X11N	30 MHz - 1 GHz	Aug. 06, 2014	Radiation (OS03-NH)

X Calibration Interval of instruments listed above is one year. NCR: Non-Calibration required.

< Radiated Emission above 1GHz >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Oct. 02, 2014	Radiation (03CH04-HY)
Amplifier	Agilent	8449B	3008A02326	1GHz ~ 26.5GHz	May 08, 2015	Radiation (03CH04-HY)
Horn Antenna	SCHWARZBECK	BBHA9120	BBHA9120D1130	1 GHz ~ 18 GHz	Sep.16, 2014	Radiation (03CH04-HY)
Turn Table	Chaintek	3000	MF7802056	0 ~ 360 degree	NCR	Radiation (03CH04-HY)
Antenna Mast	MF	MF-7802	MF780208163	1 m ~ 4 m	NCR	Radiation (03CH04-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	CB065-HF	1 GHz ~ 40 GHz	Nov. 12, 2014	Radiation (03CH04-HY)

X Calibration Interval of instruments listed above is one year. NCR: Non-Calibration required.

Appendix A. Test Photos

1 Photographs of Conducted Emissions Test Configuration

FRONT VIEW

REAR VIEW

SIDE VIEW

2 Photographs of Radiated Emission Test Configuration

For radiated emissions below 1GHz

FRONT VIEW

REAR VIEW

For radiated emissions above 1GHz

FRONT VIEW

REAR VIEW

APPENDIX B. Photographs of EUT

Report No. : EP552692

Report No. : EP552692

Report No. : EP552692

SPORTON International Inc. TEL : 886-3-327-3456 FAX : 886-3-327-0973