FCC DoC TEST REPORT

Report No.: 70207204-F

for

Compact Board

MODEL: PCM-8120

Test Report Number: 70207204-F

Issued to:

AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by:

Compliance Certification Services Inc.
Sindian BU

No.163-1, Jhongsheng Rd., Sindian City, Taipei County 23151, Taiwan TEL: 886-2-22170894

FAX: 886-2-22171029

Issued Date: February 15, 2007

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Report No.: 70207204-F

Rev.	Issue Date	Revisions	Effect Page	Revised By
00		Initial Issue	ALL	

Report No.: 70207204-F

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	EUT DESCRIPTION	5
3	TEST METHODOLOGY	6
3.1.	DECISION OF FINAL TEST MODE	6
3.2.	EUT SYSTEM OPERATION	6
4	SETUP OF EQUIPMENT UNDER TEST	7
4.1.	DESCRIPTION OF SUPPORT UNITS	7
4.2.	CONFIGURATION OF SYSTEM UNDER TEST	8
5	FACILITIES AND ACCREDITATIONS	9
5.1.	FACILITIES	
5.2.	ACCREDITATIONS	
5.3.	MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION MEASUREMENT	
6.1.	LIMITS OF CONDUCTED EMISSION MEASUREMENT	_
6.2.	TEST INSTRUMENTS	
6.3.	TEST PROCEDURES	
6.4.	TEST SETUP	
6.5.	DATA SAMPLE	
_6.6.	TEST RESULTS	
7	RADIATED EMISSION MEASUREMENT	
7.1.	LIMITS OF RADIATED EMISSION MEASUREMENT	
7.2.	TEST INSTRUMENTS	
7.3.	TEST PROCEDURES	
7.4.	TEST SETUP	
7.5.	DATA SAMPLE	
7.6.	TEST RESULTS	_
8	PHOTOGRAPHS OF THE TEST CONFIGURATION	. 20

1 TEST RESULT CERTIFICATION

Product: Compact Board

Model: PCM-8120

Brand: AAEON

Applicant: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Report No.: 70207204-F

Taipei, Taiwan, R.O.C.

Manufacturer: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R.O.C.

Tested: February 6, 2007~February 12, 2007

EMISSION					
Standard	Item	Result	Remarks		
FCC 4/ CFR Part 15 Subpart B,	Conducted (Main Port)	PASS	Meet Class A limit		
ICES-003 Issue 4 ANSI C63.4-2003	Radiated	PASS	Meet Class A limit		

Note: 1. The test result judgment is decided by the limit of measurement standard.

2. The information of measurement uncertainty is available upon the customer's request.

Deviation from Applicable Standard	
None	

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:	Reviewed by:
Maria Dans	Who Gia-
David Wang Manager of Sindian BU	Vince Chiang Assistant Manager of Sindian BU

2 EUT DESCRIPTION

Product	Compact Board		
Brand Name	AAEON		
Model	PCM-8120		
Test Item	Engineering sample		
Applicant	AAEON Technology Inc.		
Housing material	N/A		
EUT Type	⊠Engineering Sample. □Product Sample. □Mass Product Sample.		
Serial Number	N/A		
Received Date	February 7, 2007		
EUT Power Rating	<u>+</u> 5VDC / <u>+</u> 12VDC / + 3.3VDC		
AC Adaptor Manufacturer	Enhance		
AC Adaptor Model Number	P1G-6300P		
OSC/Clock Frequencies	27MHz; 32.768kHz; 14.31818MHz; 25MHz		

Report No.: 70207204-F

I/O PORT

	I/O PORT TYPES	Q'TY	TESTED WITH
1.	PIO Port	1	1
2.	SIO Port	4	4
3.	PS/2 Keyboard Port	1	1
4.	PS/2 Mouse Port	1	1
5.	Video Out Port (VGA)	1	1
6.	Audio In Port	2	2
7.	Audio Out Port	1	1
8.	LAN Port	1	1
9.	USB Port	4	4

Note: Client consigns only one model sample to test (Model Number: PCM-8120).

3 TEST METHODOLOGY

3.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

Report No.: 70207204-F

The test configuration/ mode is as the following:

Conduction:

1. Normal Mode

Radiation:

1.	Normal Mode
	Normal Mode / 1-10GHz

Conduction: Mode 1 **Radiation:** Mode 1

3.2. EUT SYSTEM OPERATION

- 1. Windows XP boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.
- 3. Run windows media player to play music.
- 4. Run Winemc.exe and choose "F:/ & G:/ & H:/ & I:/" to test USB 2.0 ports.
- 5. Press the start menu, select executive and type ping 192.168.0.2–t (EUT), ping 192.168.0.1 –t (Server Notebook).

Note: Test program is self-repeating throughout the test.

4 SETUP OF EQUIPMENT UNDER TEST

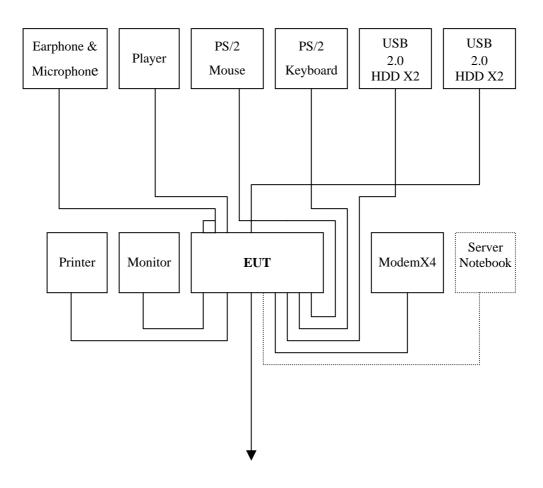
4.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: 70207204-F

EUT Devices:

No.	Equipment	Model No.	Trade Name	
1	CPU (2.0GHz)	C7	VIA	
2	Memory (512MB / DDR2-533)	HY5PS12821	Hynix	
3	Power Adaptor (300Watts)	P1G-6300P	Enhance	
4	HDD (30GB)	VAM51JJ0	Maxtor	


Peripherals Devices:

No.	Equipment	Model No.	Serial No.	FCC ID/ BSMI ID	Trade Name	Data Cable	Power Cord
1	Earphone & Microphone	MSB301	N/A	N/A	e-Sense	Unshielded, 1.8m	N/A
2	Player	RQ-L317	N/A	N/A	PANASONIC	Unshielded, 1.8m	N/A
3	PS/2 Mouse	M071KC	443029438	DOC / BSMI: R41108	DELL	Shielded, 1.8m	N/A
4	PS/2 Keyboard	SK-8110	N/A	DOC / BSMI: T3A002	DELL	Shielded, 1.8m	N/A
5	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
6	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
7	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
8	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
9	Printer	C60	DR3K039402	BSMI ID: 3902E006	EPSON	Shielded, 1.8m	N/A
10	Monitor	710V	GS17H9NXA05853A	DOC / BSMI: R33475	SAMSUNG	Shielded, 1.8m with two cores	Unshielded, 1.8m
11	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.2m	Unshielded, 1.8m
12	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.2m	Unshielded, 1.8m
13	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.2m	Unshielded, 1.8m
14	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.2m	Unshielded, 1.8m
15	Server Notebook	PP05L	2464936188	DOC / BSMI: R33002	DELL	Unshielded, 20m	Unshielded, 1.8m

Note

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

4.2. CONFIGURATION OF SYSTEM UNDER TEST

5 FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCS Taiwan Sindian BU at No.163-1, Jhongsheng Rd., Sindian City, Taipei County 23151, Taiwan.

Report No.: 70207204-F

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA FCC, A2LA TUV Rheinland

Japan VCCI Norway NEMKO

Canada INDUSTRY CANADA

Taiwan TAF, BSMI

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsemc.com.tw

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	I	requency	Uncertainty	
Conducted emissions	9k	Hz~30MHz	± 3.4510	
	Horizontal	30MHz ~ 200MHz	± 4.3799	
Radiated emissions		200MHz ~1000MHz	± 4.5147	
Radiated emissions	Vertical	30MHz ~ 200MHz	± 4.5015	
		200MHz ~1000MHz	± 4.5073	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

6 CONDUCTED EMISSION MEASUREMENT

6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCI (WHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Report No.: 70207204-F

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2. TEST INSTRUMENTS

Conducted Emission Room # B						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
TEST RECEIVER	R&S	ESHS10	843743/015	03/28/2007		
LISN (EUT)	EMCO	3825/2	9106-1810	01/03/2008		
LISN	EMCO	3825/2	1382	01/03/2008		
BNC CABLE	MIYAZAKI	5D-FB	BNC B1	07/13/2007		
Pulse Limiter	R&S	ESH3-Z2	100374	08/24/2007		
THERMO- HYGRO METER	ТОР	HA-202	9303-3	02/04/2008		
Test S/W	EMI 32.exe					

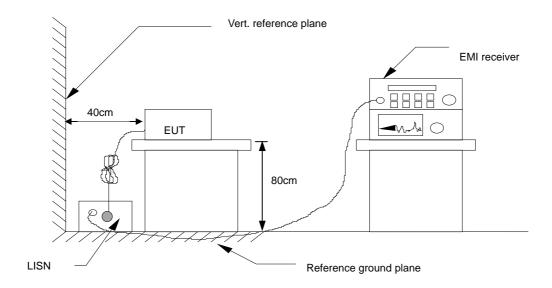
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. $N.C.R = No\ Calibration\ Request.$

6.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test

• The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.


Report No.: 70207204-F

- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest
 emissions. Emission frequency and amplitude were recorded into a computer in which
 correction factors were used to calculate the emission level and compare reading to the
 applicable limit.
- The test data of the worst-case condition(s) was recorded.

6.4. TEST SETUP

• For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

6.5. DATA SAMPLE

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	73	-29.50	Q	L1

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading Factor = Insertion loss of LISN + Cable Loss

Level = Read Level + Factor Limit = Limit stated in standard Over Limit = Reading in reference to limit

P = Peak Reading Q = Quasi-peak Reading A = Average Reading

L1 = Hot side L2 = Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) - Limit (dBuV)

Model No.	1PCN/L-X 1/2()	6dB BANDWIDTH	10 KHz
Environmental Conditions	18deg.C, 62% RH, 1010 hPa	Test Mode	Mode 1
Tested by	Jason Chia		

Report No.: 70207204-F

(The chart below shows the highest readings taken from the final data.)

	Six Highest Conducted Emission Readings						
Frequency Range Investigated			150 KHz to 30 MHz				
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)
0.161	44.26	9.90	54.16	79.00	-24.84	P	L1
0.214	38.42	9.85	48.27	79.00	-30.73	P	L1
1.744	39.07	9.89	48.96	73.00	-24.04	P	L1
9.966	39.55	10.06	49.61	73.00	-23.39	P	L1
0.161	43.21	10.00	53.21	79.00	-25.79	P	L2
1.753	32.96	9.89	42.85	73.00	-30.15	P	L2

NOTE: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

^{2.} The emission level was or more than 2dB below the Average limit, so no re-check anymore.

7 RADIATED EMISSION MEASUREMENT

7.1. LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	dBuV/m (At 10m)		
FREQUENCT (WIIIZ)	Class A	Class B	
30 ~ 230	40	30	
230 ~ 1000	47	37	

Report No.: 70207204-F

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

7.2. TEST INSTRUMENTS

Open Area Test Site # I						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
SITE NSA	CCS	I Site	N/A	10/13/2007		
MEASURE RECEIVER	SCHAFFNER	SCR3501	338	07/02/2007		
SPECTRUM ANALYZER	ADVANTEST	R3132	120900008	No Calibration Required		
ANTENNA	SCHAFFNER	CBL 6112B	2809	09/22/2007		
AMPLIFIER	SCHAFFNER	CPA9231A	3626	10/10/2007		
CABLE	BELDEN	9913	N-TYPE #I2	02/17/2007		
ATTENUATOR	MCL	UNAT-6	AT06-3	10/10/2007		
THERMO- HYGRO METER	TFA	N/A	NO.2	10/26/2007		
Test S/W		LAB VIE	EW 7.1			
	Abo	ve 1GHz Used				
EMC ANALYZER (100Hz-22GHz)	HP	8566B	2937A06102	06/29/2007		
ANTENNA (1-18GHz)	EMCO	3115	00022256	01/16/2008		
AMPLIFIER (1-18GHz)	HP	8449B	3008A01266	02/13/2007		
CABLE (1-18GHz)	JYEBAO	LL142	SMA#RS1	02/01/2008		
CABLE (1-18GHz)	HUBER +SUHNER	SUCOFLEX 104	SMA#RS3	02/01/2008		
CABLE (1-18GHz)	JYEBAO	LL142	SMA#C1	02/01/2008		

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} $N.C.R = No\ Calibration\ Request.$

7.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

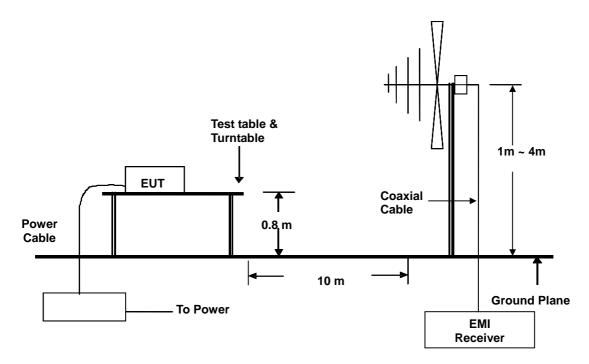
Procedure of Preliminary Test

• The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Report No.: 70207204-F

- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 10000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test


• EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

Report No.: 70207204-F

• The Analyzer / Receiver scanned from 30MHz to 10000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

 Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented. The test data of the worst-case condition(s) was recorded. 		maximize the emission reading level.
The test data of the worst-case condition(s) was recorded.	•	polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only
	•	The test data of the worst-case condition(s) was recorded.
	_	

7.4. TEST SETUP

• For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.5. DATA SAMPLE

Freq. MHz	Read Level dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Over Limit dB	Reading Type (P/Q/A)	Pol. (H/V)
x.xx	14.0	12.2	26.2	40	-13.8	Q	Н

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading

Factor = Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain

Level = Read Level + Factor Limit = Limit stated in standard Over Limit = Reading in reference to limit

P = Peak Reading Q = Quasi-peak Reading A = Average Reading

H = Antenna Polarization: Horizontal V = Antenna Polarization: Vertical

Calculation Formula

Over Limit (dB) = Level (dBuV/m) – Limit (dBuV/m)

7.6. TEST RESULTS

Model No.	PCM-8120	Test Mode	Mode 1
Environmental Conditions	120dea C 70% PH 1000 hPa	6dB BANDWIDTH	120 KHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Alex Pan

Report No.: 70207204-F

(The chart below shows the highest readings taken from the final data.)

	Six Highest Radiated Emission Readings							
Frequency Range Investigated			30 MHz to 1000 MHz at 10m			m		
Freq (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Reading Type (P/Q/A)	Pol. (H/V)	
50.550	44.00	-15.08	28.92	40.00	-11.08	Q	V	
135.410	39.30	-9.24	30.06	40.00	-9.94	Q	V	
216.030	45.00	-9.93	35.08	40.00	-4.93	Q	V	
240.070	49.00	-8.10	40.90	47.00	-6.10	Q	V	
409.000	37.00	-1.81	35.19	47.00	-11.81	Q	V	
566.600	36.00	2.38	38.38	47.00	-8.62	Q	V	

EMARKS: 1. 30MHz to 1000MHz test is Applicable CISPR 22 / EN 55022 standard.

2. The other emission levels were very low against the limit.

3. P= Peak Reading; Q= Quasi-peak Reading A= Average Reading

Model No.	PCM-8120	Test Mode	Mode 1
Environmental Conditions	170dag C 70% PH 1000hPa	6dB BANDWIDTH	120 KHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Alex Pan

Report No.: 70207204-F

(The chart below shows the highest readings taken from the final data.)

Six Highest Radiated Emission Readings							
Frequency Range Investigated				30 MHz to 1000 MHz at 10m			
Freq (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Reading Type (P/Q/A)	Pol. (H/V)
50.424	43.90	-15.05	28.85	40.00	-11.15	Q	H
135.406	42.20	-9.24	32.96	40.00	-7.04	Q	Н
215.978	40.00	-9.93	30.07	40.00	-9.93	Q	Н
240.150	45.00	-8.10	36.90	47.00	-10.10	Q	Н
409.034	38.20	-1.81	36.39	47.00	-10.61	Q	Н
566.674	38.00	2.38	40.38	47.00	-6.62	Q	H

REMARKS: 1. 30MHz to 1000MHz test is Applicable CISPR 22 / EN 55022 standard.

2. The other emission levels were very low against the limit.

3. P= Peak Reading; Q= Quasi-peak Reading A= Average Reading

8 PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST

Report No.: 70207204-F

COMPLIANCE Certification Services Inc.

Report No.: 70207204-F

RADIATED EMISSION TEST

