

FCC PART 15, SUBPART B ICES-003, Issue 6, January 2016 TEST REPORT

For

AAEON Technology. Inc.

5F, No. 135, Lane 235, Pao Chiao Rd., Taipei City, Taiwan

Main Model: BOXER-RK88-0001 Series Model: xxBOXER-RK88xxxxxx

(x-Where x may be any combination of alphanumeric characters or "-" or blank.)

Report Type: Product Type:

Original Report Embedded Controller

Report Producer: Kaylee Chiang

Report Number : RTWL171229001-00

Report Date : 2018-01-16

Reviewed By: <u>Jerry Chang</u> <u>Jewn</u> . C

Prepared By: Bay Area Compliance Laboratories Corp.(Taiwan)

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,

New Taipei City 22183, Taiwan, R.O.C.

Tel: +886 (2)2647 6898 Fax: +886 (2) 2647 6895

www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan)

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
1.0	RTWL171229001	RTWL171229001-00	2018.01.16	Original Report	Kaylee

TABLE OF CONTENTS

1. Ge	neral Information	4
1.1	Product Description for Equipment under Test (EUT)	4
1.2	Objective	4
1.3	Related Submittal(s)/Grant(s)	5
1.4	Test Facility	5
2. Sys	stem Test Configuration	6
2.1	Description of Test Configuration	6
2.2	Test Mode	6
2.3	EUT Exercise Software	6
2.4	Special Accessories	6
2.5	Equipment Modifications	6
2.6	Description of operation	
2.7	Support Equipment List and Details	
2.8	External Cable List and Details	
2.9	Block Diagram of Test Setup	7
3. Su	mmary of Test Results	8
4. FC	C §15.107 – AC Line Conducted Emissions	9
4.1	Applicable Standard	9
4.2	Measurement Uncertainty	9
4.3	EUT Setup	9
4.4	EMI Test Receiver Setup	10
4.5	Test Procedure	
4.6	Test Equipment List and Details	
4.7	Factor & Over Limit Calculation	
4.8	Test Results Summary	
4.9	Environmental Conditions	
4.10	Test Results	
5. FC	C §15.109 & ICES 003 – Radiated Emission	
5.1	Applicable Standard	
5.2	Measurement Uncertainty	
5.3	EUT Setup	
5.4	EMI Test Receiver Setup	
5.5	Test Procedure	
5.6	Test Equipment List and Details	
5.7	Correct Factor & Margin Calculation	
5.8	Test Results Summary	
5.9	Environmental Conditions	
5.10	Test Results	
5.11	Radiated Emissions Test Plot and Data	
Exhibit	A – EUT Setup Photographs	23
Exhibit	B – Eut Photographs	26

1. General Information

1.1 Product Description for Equipment under Test (EUT)

AAEON Technology. Inc.

Applicant: 5F, No. 135, Lane 235, Pao Chiao Rd., Taipei City,

Taiwan

AAEON Technology. Inc.

Manufacturer: 5F, No. 135, Lane 235, Pao Chiao Rd., Taipei City,

Taiwan

Product: Embedded Controller

Main Model: BOXER-RK88-0001

Series Model: xxBOXER-RK88xxxxxx (x-Where x may be any

combination of alphanumeric characters or "-" or blank.)

Trade Name: AAEON

Highest Operating Frequency: 1600 MHz

Voltage Range: I/P: 100-240Vac, 1.5A

O/P: 12Vdc, 5A

Date of Test: Dec. 27, 2017 ~ Jan. 16, 2018

Mode difference: The major electrical and mechanical constructions of series models are identical to the basic model, except different selling region. The model, BOXER-RK88-0001 is the testing sample, and the final test data are shown on this test report.

xxBOXER-RK88xxxxxx			
		blank = AAEON Metal	
Enout Ileasil	For market color	BK = Black	
Front "xx"		BL = Blue	
		WH = White	
Dahind !!	F 1 4 0	VNET01 = Close Wi-Fi and BT Function	
Behind "xxxxxx"	For market software	JARLTE = Hide function keys	

1.2 Objective

This test report is prepared on behalf of *AAEON Technology*. *Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A and B of the Federal Communication Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15 B.

^{*}All measurement and test data in this report was gathered from production sample serial number: 171229001 (Assigned by BACL, Taiwan). The EUT supplied by the applicant was received on 2017-12-29.

1.3 Related Submittal(s)/Grant(s)

No related submittal(s).

1.4 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Taiwan) to collect test data is located on

∑70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

⊠68-3, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (Taiwan) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3180) and the FCC designation No. TW3180 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 974454. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

2. System Test Configuration

2.1 Description of Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

2.2 Test Mode

Conducted Test			
Final Test Mode Description			
Mode 1 Full system,LAN:1Gbps Ping test, OTG: Flash R/W, HDMI : 1920*108			

Radiated Test				
Final Test Mode	Final Test Mode Description			
Mode 1 Full system,LAN:1Gbps Ping test, OTG: Flash R/W, HDMI: 1920*1080				

2.3 EUT Exercise Software

The software "TFGEN-1.00" and "Data Link" was used.

2.4 Special Accessories

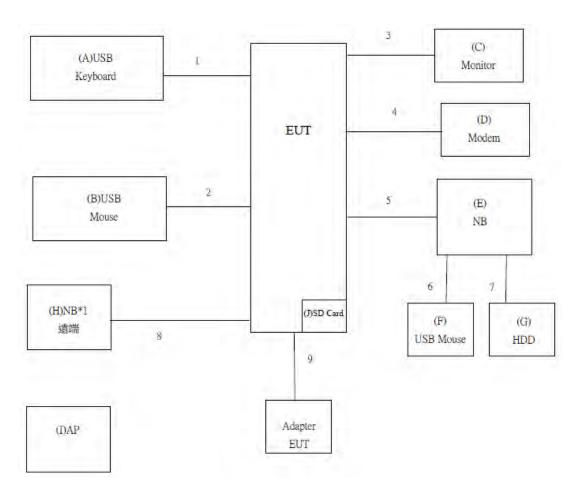
No special accessory.

2.5 Equipment Modifications

No modification was made to the EUT.

2.6 Description of operation

- 1. Turn on EUT and power equipment.
- 2. EUT use have H Pattern.
- 3. EUT R/W data to the HDD and SD Card.
- 4. EUT WiFi Link AP Ping test.
- 5. EUT LAN Link ping test NB.


2.7 Support Equipment List and Details

No.	Description	Manufacturer Model Number		BSMI	FCC ID
A	USB Keyboard	DELL	SK-8120	R3A002	DoC
В	Mouse	DELL	MS111-P	R41108	DoC
С	Monitor	AOC	U2868PQU	R33037	DoC
D	Modem	DigiFusion	AL-56ERM	N/A	DoC
Е	NB	ASUS	P2538U	R31018	DoC
F	Mouse	DELL	MS111-P	R41108	DoC
G	HDD	WD	My Passport Ultra	D33015	DoC
Н	NB	ASUS	P2538U	R31018	DoC
I	AP	D-Link	Ac1900	N/A	DoC

2.8 External Cable List and Details

No.	Description	Shielded Type	Ferrite Core	Length	Remark
1	USB Cable	Non-Shielded	N/A	1.8M	
2	USB Cable	Non-Shielded	N/A	1.8M	
3	HDMI Cable	Shielded	N/A	1.8M	
4	RS-232 Cable	Shielded	N/A	1.6M	
5	OTG Cable	Shielded	N/A	1.0M	Customer provided
6	USB Cable	Non-Shielded	N/A	1.8M	
7	USB Cable	Shielded	N/A	1.0M	
8	LAN Cable	Non-Shielded	N/A	10M	
9	DC Cable	Non-Shielded	N/A	1.6M	EUT

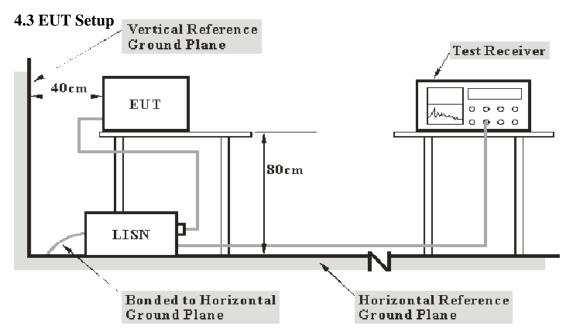
2.9 Block Diagram of Test Setup

3. Summary of Test Results

Rules	Description of Test	Results	
§15.107	AC Line Conducted Emission	Compliance	
ICES-003	AC Line Conducted Emission	Compliance	
§15.109	Radiated Emission	Compliance	
ICES-003	Radiated Emission	Compliance	

4. FCC §15.107 – AC Line Conducted Emissions

4.1 Applicable Standard


According to FCC §15.107 and ICES 003.

4.2 Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN/ISN and receiver, LISN/ISN voltage division factor, LISN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Taiwan) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Port	Expanded Measurement uncertainty
AC Mains	4.64 dB (k=2, 95% level of confidence)
CAT 3	4.20 dB (k=2, 95% level of confidence)
CAT 5	4.59 dB (k=2, 95% level of confidence)
CAT 6	5.02 dB (k=2, 95% level of confidence)

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class A.

The spacing between the peripherals is 10 cm.

4.4 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

4.5 Test Procedure

During the conducted emission test, the power cord was connected to the first LISN and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

4.6 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration	Calibration
Description	Manufacturer		Serial Number	Date	Due Date
LISN	Rohde & Schwarz	ENV216	101248	2017/07/20	2018/07/19
LISN	EMCO	3816/2	00075848	2017/08/02	2018/08/01
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2017/11/06	2018/11/05
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM025	2017/08/11	2018/08/10
RF Cable	EMEC	EM-CB5D	001	2017/07/24	2018/07/23
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to TAF requirements, traceable to the ETC.

4.7 Factor & Over Limit Calculation

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

4.8 Test Results Summary

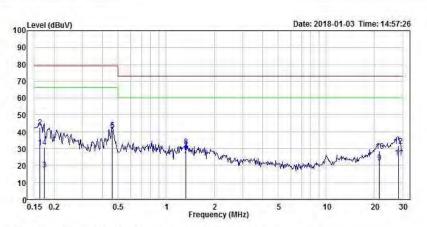
According to the recorded data in following table, the EUT complied with the FCC Part 15.107. Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in complies with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \le L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

4.9 Environmental Conditions

Temperature:	25.2 ℃	
Relative Humidity:	50 %	
ATM Pressure:	1010 hPa	


The testing was performed by Sky Huang on 2018-01-03.

4.10 Test Results: PASS

4.11 Conducted Emissions Test Plots and Data AC 120V/60 Hz, Line

倍科檢驗科技有限公司 Bay Area Compliance Labs Corp.

Condition: limit\FCC\FCC Part15B CLASS-A QP.csv Line

EUT :

Model :

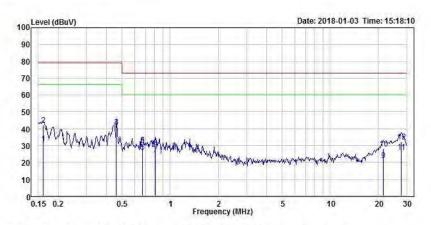
Note : 120V/60Hz

	2000		Limit	Over	F	Read		p. 7 (p)
	Freq	Level	Line	Limit	Factor	rever	Remark	Pol/Phase
-	MHz	dBuV	dBuV	dB	dB	dBuV		
1	0.162	30.62	66.00	-35.38	19.50	11.12	Average	Line
2	0.162	42.76	79.00	-36.24	19.50	23.26	QP	Line
3	0.173	17.35	66.00	-48.65	19.50	-2.15	Average	Line
4	0.173	30.61	79.00	-48.39	19.50	11.11	QP	Line
5	0.461	40.84	66.00	-25.16	19.51	21.33	Average	Line
5 6	0.461	41.21	79.00	-37.79	19.51	21.70	QP	Line
7	1.320	25.71	60.00	-34.29	19.54	6.17	Average	Line
8	1.320	31.13	73.00	-41.87	19.54	11.59	QP	Line
9	21.468	21.56	60.00	-38.44	19.85	1.71	Average	Line
10	21.468	28.41	73.00	-44.59	19.85	8.56	QP	Line
11	28.147	24.83	60.00	-35.17	19.89	4.94	Average	Line
12	28.147	31.40	73.00	-41.60	19.89	11.51	QP	Line

-1-

Note:

Level = Read Level + Factor


Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

AC 120V/60 Hz, Neutral

倍科檢驗科技有限公司 Bay Area Compliance Labs Corp.

Condition: limit\FCC\FCC Part15B CLASS-A QP.csv Neutral

Limit

EUT : Model :

Note : 120V/60Hz

	Freq	Level	Limit	Limit	Factor	Level	Remark	Pol/Phase
1-	MHz	dBuV	dBuV	dB	dB	dBuV		
1	0.161	31.30	66.00	-34.70	19.63	11.67	Average	Neutral
1 2 3	0.161	42.24	79.00	-36.76	19.63	22.61	QP	Neutral
3	0.461	40.90	66.00	-25.10	19.64	21.26	Average	Neutral
4	0.461	41.01	79.00	-37.99	19.64	21.37	QP	Neutral
5	0.671	26.11	60.00	-33.89	19.66	6.45	Average	Neutral
5	0.671	30.46	73.00	-42.54	19.66	10.80	QP	Neutral
7	0.806	24.56	60.00	-35.44	19.66	4.90	Average	Neutral
8	0.806	29.06	73.00	-43.94	19.66	9.40	QP	Neutral
9	21.468	21.32	60.00	-38.68	20.06	1.26	Average	Neutral
10	21.468	28.11	73.00	-44.89	20.06	8.05	QP	Neutral
11	27.703	26.24	60.00	-33.76	20.13	6.11	Average	Neutral
12	27.703	32.46	73.00	-40.54	20.13	12.33	QP	Neutral

-2-

Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

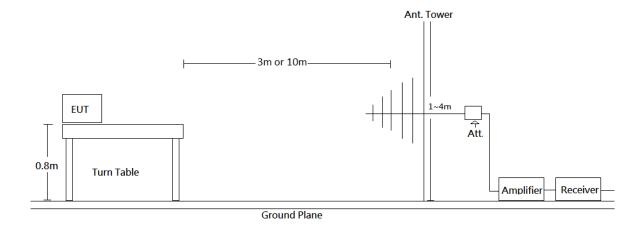
Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

5. FCC §15.109 & ICES 003 – Radiated Emission

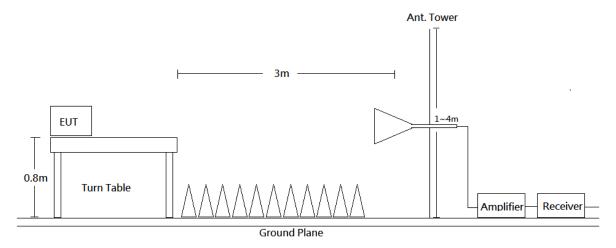
5.1 Applicable Standard

FCC §15.109 and ICES 003

5.2 Measurement Uncertainty


All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Taiwan) is shown in below table. And the uncertainty will not be taken into consideration for the test data recorded in the report


Frequency	Measurement uncertainty
9 kHz~30MHz	3.20 dB (k=2, 95% level of confidence)
30MHz~200MHz	3.90 dB (k=2, 95% level of confidence)
200MHz~1GHz	5.33 dB (k=2, 95% level of confidence)
1 GHz~6 GHz	4.84 dB (k=2, 95% level of confidence)
Above 6 GHz	5.16 dB (k=2, 95% level of confidence)

5.3 EUT Setup

Below 1GHz:

Above 1GHz:

The radiated disturbances below 1GHz tests were performed in the 3 or 10 meters Chamber test site, above 1GHz tests were performed in the 3 meters Chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class A limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The power cord was connected to a 120 VAC/60 Hz power source.

5.4 EMI Test Receiver Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations

Frequency Range RBW		RBW Video B/W	IF B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz 120 kHz		QP
A1 1 CH	1MHz	3MHz	/	PK
Above 1 GHz	1MHz	10 Hz	/	Ave.

5.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

5.6 Test Equipment List and DetailsRadiation 10m (10M Chamber)

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol & EMEC	JB3 &EM- ATT6000-6-NN	A090816-1& ATT-09-001	2017/09/15	2018/09/14
Bilog Antenna	Sunol & EMEC	JB3 &EM- ATT6000-6-NN	A090816-2& ATT-09-002	2017/09/15	2018/09/14
Preamplifier	Sonoma	310N	187293	2017/09/22	2018/09/21
Preamplifier	Sonoma	310N	187294	2017/09/28	2018/09/27
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2017/07/07	2018/07/06
EMI Test Receiver	Rohde & Schwarz	ESR3	102098	2017/07/07	2018/07/06
Microflex Cable(12M)	UTIFLEX	UFA210B-1- 4724-70U70U	228333-001	2017/08/28	2018/08/27
Microflex Cable(8M)	UTIFLEX	UFA210B-1- 3149-70U70U	228332-001	2017/09/28	2018/09/27
Microflex Cable(6M)	UTIFLEX	UFA210B-1- 2362-70U70U	228331-001	2017/09/28	2018/09/27
Microflex Cable(6M)	UTIFLEX	UFA210B-1- 2362-70U70U	228331-002	2017/09/28	2018/09/27
Microflex Cable(6M)	UTIFLEX	UFA210B-1- 2362-70U70U	228331-003	2017/09/28	2018/09/27
Turn Table	Champro	TT-3000	060817-T	N.C.R	N.C.R
Antenna Tower	Champro	AM-BS-4500-E	060817-A	N.C.R	N.C.R
Antenna Tower	Champro	AM-BS-4500-E	060817-BS	N.C.R	N.C.R
Controller	Champro	EM1000	060806	N.C.R	N.C.R
Controller	Champro	EM1000	060817	N.C.R	N.C.R
Software	Farad	EZ_EMC	EZ-EMC-BACL- 03A1	N.C.R	N.C.R

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to TAF requirements, traceable to the ETC.

Radiation (966-B)

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol & EMEC	JB3 /EM- ATT18-6-NN	A061204 / ATT- 06-001	2017/11/17	2018/11/16
Horn Antenna	EMCO	3115	2171	2017/07/17	2018/07/16
Horn Antenna	ETS-Lindgren	3116	00060023	2017/09/04	2018/09/03
Pre Amplifier	Sonoma	310N	130601	2017/09/28	2018/09/27
Preamplifier	EMEC	EM01G18G	060657	2016/12/13	2017/12/12
Preamplifier	EMEC	EM18G40G	060656	2016/12/13	2017/12/12
EMI Test Receiver	R & S	ESCI	100540	2017/06/30	2018/06/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101204	2017/07/08	2018/07/07
Microflex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225756-001	2017/07/14	2018/07/13
Microflex Cable	UTIFLEXES	UFB311A-Q- 1440-300300	220490-008	2017/07/14	2018/07/13
Microflex Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2017/03/24	2018/03/23
Microflex Cable	ROSNOL	K1K50-UP0264- K1K50-80CM	160309-2	2017/01/20	2018/01/19
Turn Table	Champro	TT-2000	080816-T	N.C.R	N.C.R
Antenna Tower	Champro	AM-BS-4500-B	080816-BS	N.C.R	N.C.R
Controller	Champro	EM1000	080816	N.C.R	N.C.R
Software	Farad	EZ_EMC	BACL-03A1	N.C.R	N.C.R

^{*} *Statement of Traceability:* BACL Corp. attests that all calibrations have been performed according to TAF requirements, traceable to the ETC.

5.7 Correct Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain + Attenuator

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

5.8 Test Results Summary

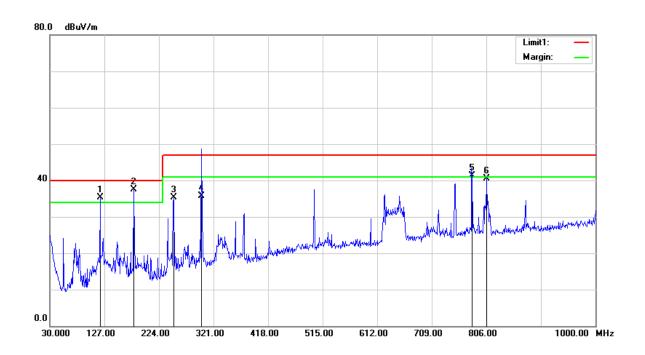
According to the data in the following table, the EUT complied with the FCC §15.109 Class A. Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \le L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

5.9 Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	60 %
ATM Pressure:	983 hPa


The testing was performed by Sky Huang on 2017-12-27.

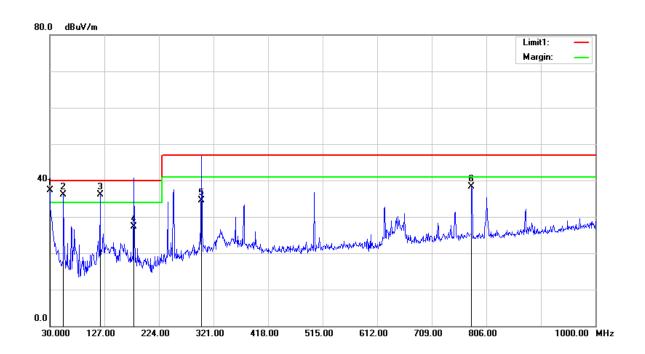
5.10 Test Results: PASS

5.11 Radiated Emissions Test Plot and Data

Mode 1

Below 1 GHz / Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	119.2400	46.75	-11.41	35.34	40.00	-4.66	400	125	peak
2	179.3800	49.78	-12.18	37.60	40.00	-2.40	398	359	peak
3	250.1900	48.70	-13.36	35.34	47.00	-11.66	400	77	peak
4	299.6600	46.90	-11.10	35.80	47.00	-11.20	400	350	QP
5	780.7800	41.40	-0.04	41.36	47.00	-5.64	100	231	peak
6	806.0000	40.20	0.38	40.58	47.00	-6.42	100	127	peak


Note:

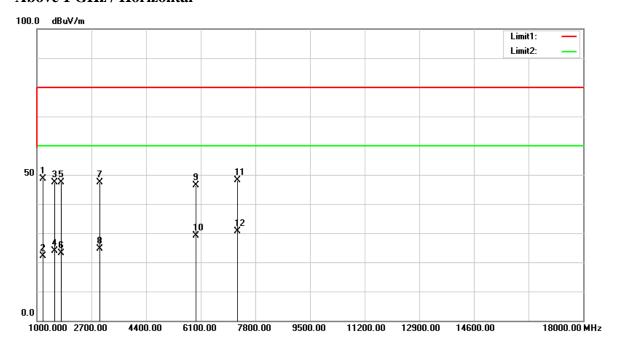
Result = Reading + Correct Factor

Margin = Result –Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain + Attenuator

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	30.0000	41.73	-4.45	37.28	40.00	-2.72	100	213	peak
2	54.2500	53.43	-17.28	36.15	40.00	-3.85	100	137	peak
3	119.2400	46.54	-10.45	36.09	40.00	-3.91	100	156	peak
4	179.3800	40.51	-13.13	27.38	40.00	-12.62	100	202	QP
5	299.6600	44.70	-10.15	34.55	47.00	-12.45	100	359	QP
6	779.8100	39.60	-1.28	38.32	47.00	-8.68	100	117	peak


Note:

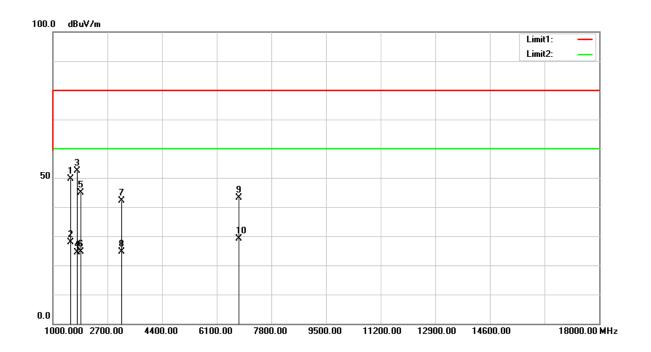
Result = Reading + Correct Factor

Margin = Result –Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain + Attenuator

Above 1 GHz / Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	1187.000	62.53	-13.81	48.72	80.00	-31.28	100	337	peak
2	1187.000	36.06	-13.81	22.25	60.00	-37.75	100	337	AVG
3	1544.000	59.82	-12.42	47.40	80.00	-32.60	100	229	peak
4	1544.000	36.40	-12.42	23.98	60.00	-36.02	100	229	AVG
5	1748.000	58.30	-11.00	47.30	80.00	-32.70	100	266	peak
6	1748.000	34.12	-11.00	23.12	60.00	-36.88	100	266	AVG
7	2955.000	53.21	-5.71	47.50	80.00	-32.50	100	236	peak
8	2955.000	30.36	-5.71	24.65	60.00	-35.35	100	236	AVG
9	5947.000	41.01	5.40	46.41	80.00	-33.59	100	174	peak
10	5947.000	23.79	5.40	29.19	60.00	-30.81	100	174	AVG
11	7239.000	41.07	7.14	48.21	80.00	-31.79	100	281	peak
12	7239.000	23.39	7.14	30.53	60.00	-29.47	100	281	AVG


Note:

Result = Reading + Correct Factor

Margin = Result –Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain + Attenuator

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	1544.000	62.01	-12.42	49.59	80.00	-30.41	100	165	peak
2	1544.000	40.31	-12.42	27.89	60.00	-32.11	100	165	AVG
3	1765.000	63.33	-10.87	52.46	80.00	-27.54	100	130	peak
4	1765.000	35.13	-10.87	24.26	60.00	-35.74	100	130	AVG
5	1867.000	55.09	-10.17	44.92	80.00	-35.08	100	129	peak
6	1867.000	34.85	-10.17	24.68	60.00	-35.32	100	129	AVG
7	3142.000	47.29	-5.06	42.23	80.00	-37.77	100	217	peak
8	3142.000	29.60	-5.06	24.54	60.00	-35.46	100	217	AVG
9	6797.000	36.70	6.40	43.10	80.00	-36.90	100	229	peak
10	6797.000	22.65	6.40	29.05	60.00	-30.95	100	229	AVG

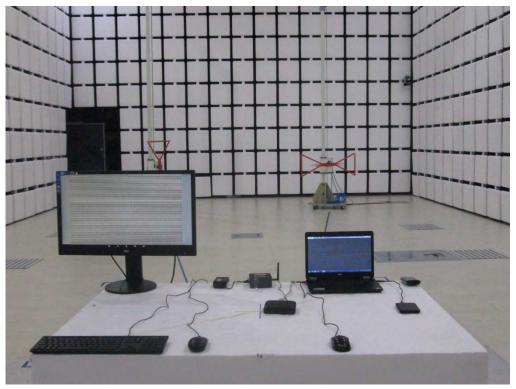
Note:

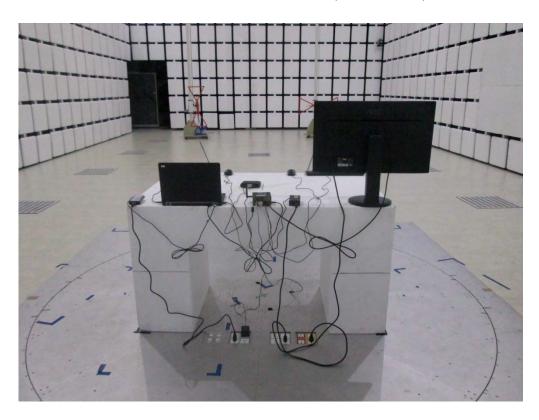
Result = Reading + Correct Factor

Margin = Result –Limit

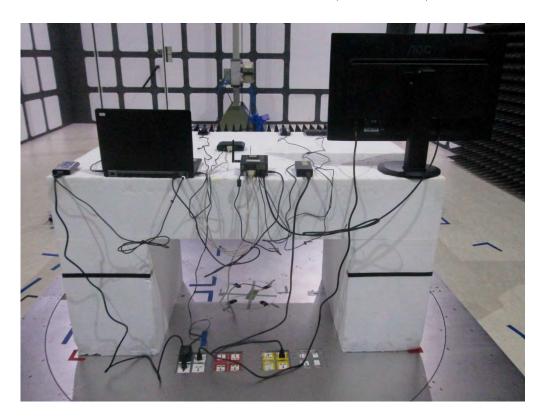
Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain + Attenuator

Exhibit A – EUT Setup Photographs




Conducted Emission - Rear View

Radiated Emission - Front View (Below 1GHz)


Radiated Emission - Rear View (Below 1GHz)

Radiated Emission - Front View (Above 1GHz)



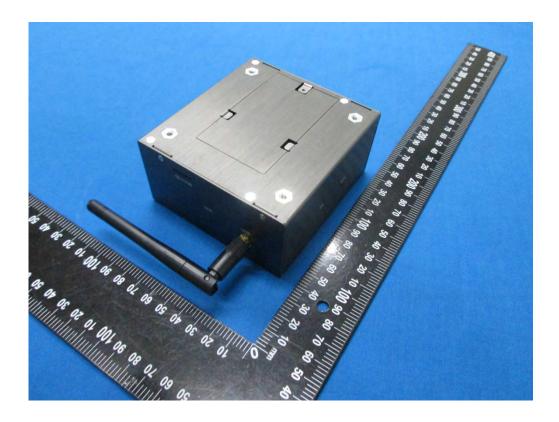
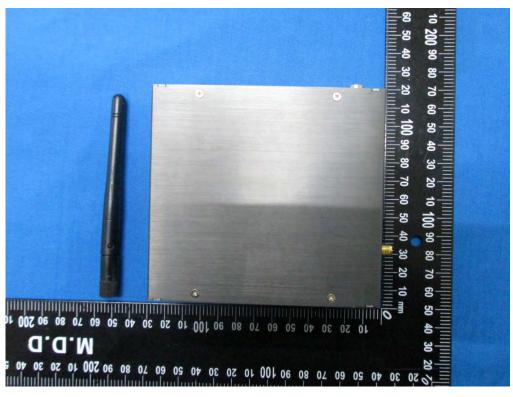
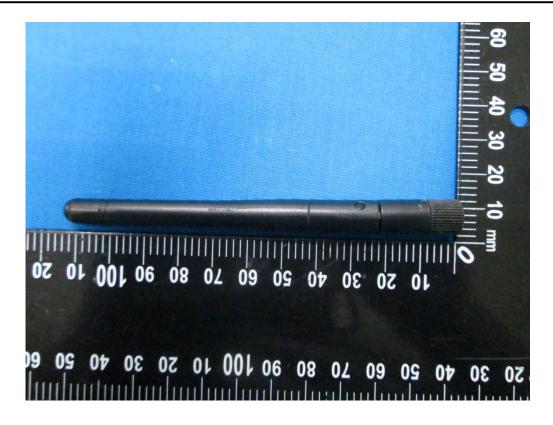
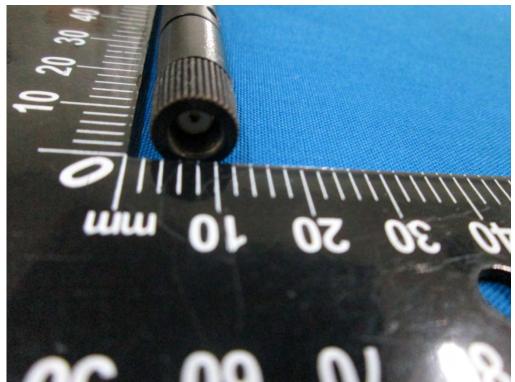

Radiated Emission - Rear View (Above 1GHz)

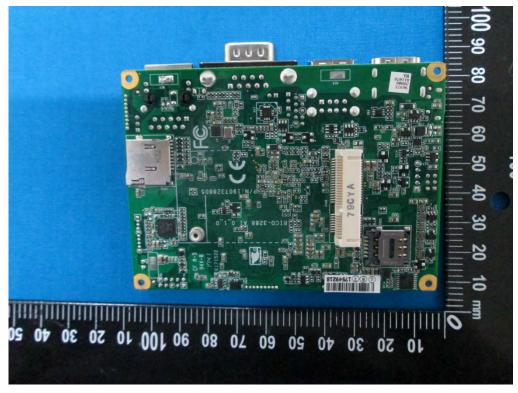
Exhibit B – Eut Photographs

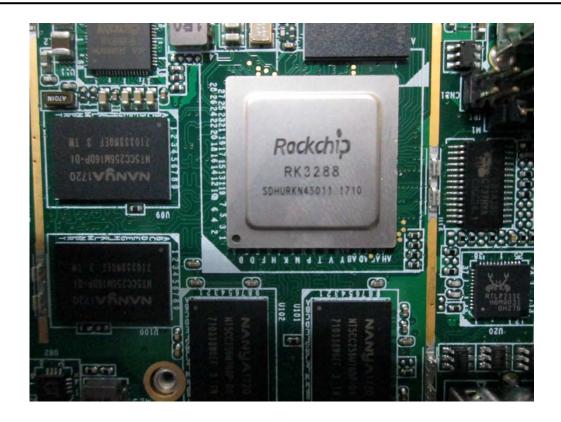
External Photographs

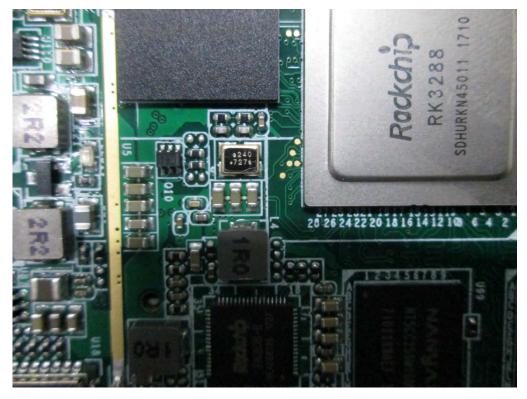


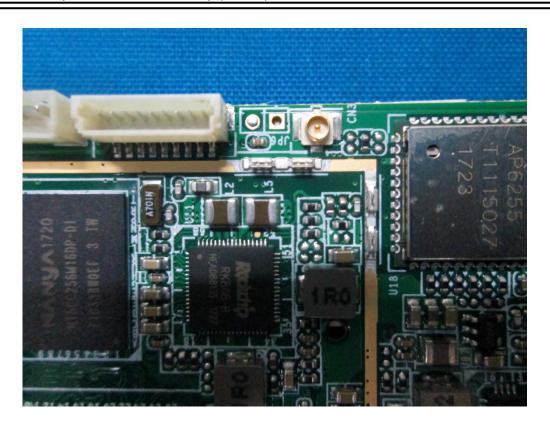


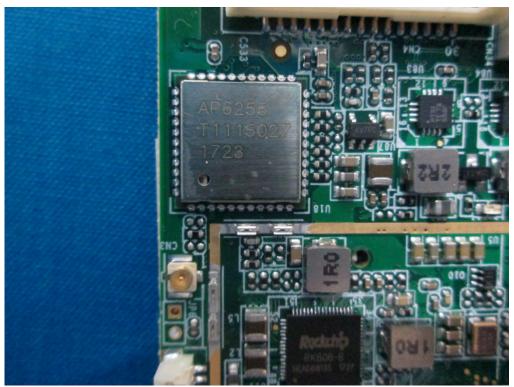


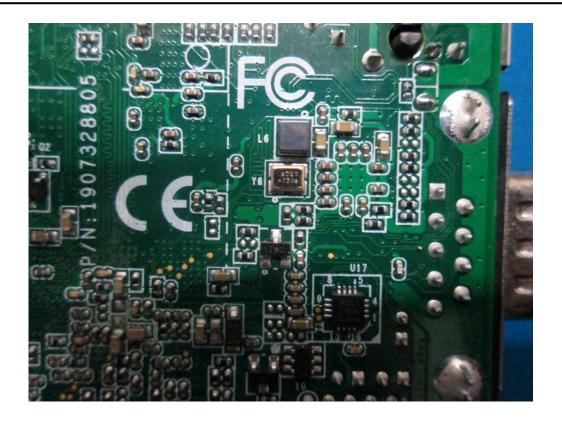


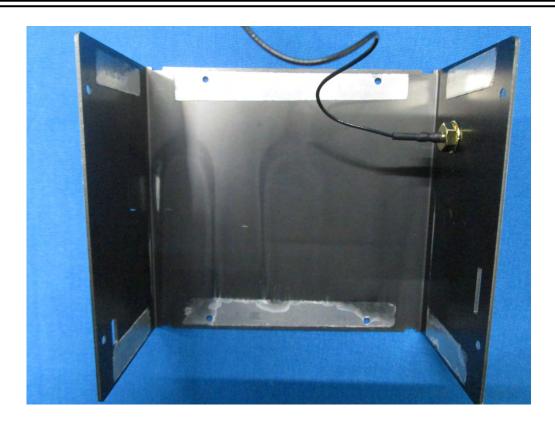

Internal Photographs

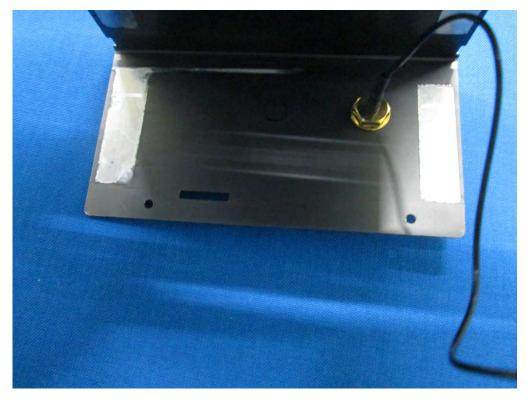












***** END OF REPORT *****