

FCC 47 CFR PART 15 SUBPART B

TEST REPORT

For

2U Rack Mounting Chassis

Model: ARC-625

Trade Name: AAEON

Issued for

AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Hsintien Lab. No. 165, Chunghsen Road, Hsintien City Taipei Hsien, Taiwan TEL: (02) 2217-0894 FAX: (02) 2217-1029

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1	T	EST RESULT CERTIFICATION	.3
2	E	UT DESCRIPTION	. 4
3	T	EST METHODOLOGY	. 5
	3.1	EUT SYSTEM OPERATION	. 5
	3.2	DECISION OF FINAL TEST MODE	. 5
4	SI	ETUP OF EQUIPMENT UNDER TEST	. 6
5	F	ACILITIES AND ACCREDITATIONS	.7
	5.1	FACILITIES	.7
	5.2		
6	IN	STRUMENT AND CALIBRATION	. 8
	6.1	MEASURING INSTRUMENT CALIBRATION	. 8
	6.2		
7	L	INE CONDUCTED & RADIATED EMISSION TEST	.9
	7.1	LIMIT	.9
	7.2		
	7.3	TEST PROCEDURE OF RADIATED EMISSION	12
	7.4	TEST RESULTS	14
A	PPF	ENDIX I - PHOTOGRAPHS OF TEST SETUP	16
A	PPF	ENDIX II - TEST RESULT OF FINAL DATAS	18

1 TEST RESULT CERTIFICATION

Applicant:	AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.	
Manufacturer:	AAEON Technology Inc.	
	5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.	
Equipment Under Test:	2U Rack Mounting Chassis	
Trade Name:	AAEON	
Model:	ARC-625	
Detailed EUT Description:	See Item 2 of this report	
Date of Test:	October 28, 2004 & November 1, 2004	

Applicable Standard	Class / Limit	Test Result			
FCC Part 15 Subpart B	Class A	No non-compliance noted			
Deviation from Applicable Standard					
None					

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart B and the measurement procedures were according to ANSI C63.4. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

Approved by:

Rick yes

Rick Yeo Manager of Hsintien Laboratory Compliance Certification Services Inc. Reviewed by:

Vince Chiang

Vince Chiang Section Manager of Hsintien Laboratory Compliance Certification Services Inc.

2 EUT DESCRIPTION

Product	2U Rack Mounting Chassis
Trade Name	AAEON
Model	ARC-625
Housing Type	Metal case
EUT Power Rating	N/A
AC Power During Test	120VAC / 60 Hz to Host PC Power Supply
Power Supply Manufacturer	Seventeam
Power Supply Model Number	ST-402HLP
AC Power Cord Type	Unshielded, 1.8m (Detachable) to Host PC Power Supply
OSC/Clock Frequency	N/A

I/O PORT OF EUT

I/O PORT TYPE	Q'TY	TESTED WITH

Note: Client consigns only one model sample (Model Number is ARC-625) to test.

3 TEST METHODOLOGY

3.1 EUT System Operation

- 1. Windows XP boots system.
- 2. Run Emctest.exe To Activate All Peripherals And Display "H" Pattern On Monitor Screen.
- 3. Press the start menu, select executive and type ping 192.168.0.1 –t (Server Notebook), ping 192.168.0.5 –t (EUT).

Note: Test program is self-repeating throughout the test.

3.2 DECISION OF FINAL TEST MODE

1. The following test mode were scanned during the preliminary test:

1. NORMAL MODE

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Conduction: Mode 3

Radiation: Mode 1

Then, the EUT configuration and cable configuration of the above highest emission mode was recorded for all final test items.

4 SETUP OF EQUIPMENT UNDER TEST

Setup Diagram

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

Support Equipment

Host PC Devices:

No	Equipment	Model #	Serial #	FCC ID/ BSMI ID	Trade Name
1	PCI BOARD	BP-206VG-P4	N/A	N/A	N/A
2	CPU BOARD	FSB-860B	N/A	N/A	N/A
3	CPU (2.4GHz)	P4	N/A	N/A	Intel
4	RAM (256MB)	DD2508AMTA	N/A	N/A	ELPIDA
5	CD-ROM	CD-2050E	N/A	N/A	AFREEY
6	Floppy	FD-235HF	N/A	N/A	TEAC
7	HDD	HTS424020M9AT00	N/A	N/A	HITACHI
8	Power Supply	ST-402HLP	N/A	N/A	Seventeam

Peripherals Devices:

No	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade Name	Data Cable	Power Cord
1	USB Mouse	M-BE5	LZE20309352	BSMI ID: 3892A471	Logitech	Shielded, 1.9m	N/A
2	USB Mouse	M-S34	LZB90411543	BSMI ID: 4862A011 DZL211029	Logitech	Shielded, 1.9m	N/A
3	USB Mouse	M-S34	LNA12301890	BSMI ID: 4862A011 DZL211029	Logitech	Shielded, 1.9m	N/A
4	PS/2 Mouse	M-BE5	LZE20309352	BSMI ID: 3892A471	Logitech	Shielded, 1.9m	N/A
5	PS/2 Keyboard	6311-TW4C16	N/A	BSMI ID: 4862A064	ACER	Shielded, 1.7m	N/A
6	Monitor	171T	GH17H4LT702613Z	BSMI: R33475	SAMSUNG	Shielded, 1.8m with two cores	Unshielded, 1.8m
1	Server Notebook	M285	RD49R-7YTJR- B3C4K-G2JQX- DD3CG	BSMI: R31259 DoC	LEO	Unshielded, 20m	Unshielded, 1.8m with a core

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at CCS Taiwan Hsintien Lab at No. 165, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan.

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform Electromagnetic compatibility tests are registered or accredited by the organizations listed in the following table which includes the recognized scope specifically.

Country	Agency	Scope of Accreditation	Logo
USA A2LA CFR 47, FCC Part 15/18 using ANSI 63.4; AS/NZS 3548; VCCI V3; CNS 13438; CNS 13439; CNS 13783; CNS 14115; CISPR 11/EN 55011; CISPR 14-1/EN 55014-1; CISPR 15/EN 55015; CISPR 22/EN 55022; EN 50081-1/EN 61000-6-3; EN 50082-1/EN 61000-6-4; IEC/EN 61000-4-2, IEC/EN 61000-4-3, IEC/EN 61000-4-4, IEC/EN 61000-4-5, IEC/EN 61000-4-6, IEC/EN 61000-4-8, IEC/EN 61000-4-11, IEC/EN 61000-3-2, IEC/EN 61000-3-3; CISPR 24/EN 55024; CISPR 14-2/EN 55014-2; EN 50081-2/EN 61000-6-1; EN 50082-2/EN 61000-6-2.		ACCREDITED 824.01	
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC 250366
Japan	VCCI	3/10 meter Open Area Test Sites and Line Conducted Test Room to perform conducted/radiated measurements	VCCI R-1434/1630~4 C-1511/1882
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, Cispr 16-1/2/3/4	ELA 103
Taiwan	CNLA	47 CFR FCC Part 15 Subpart B, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 13438, AS/NZS 3548, VCCI, CNS 13022-1/2/3, EN 55022, EN 55013, EN 55014-1, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, ENV 50141, ENV 50142	1108 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439	SL2-IN-E-0005 SL2-A1-E-0005 SL2-R1-E-0005 SL2-R2-E-0005

Note: No part of this report may be used to claim or imply product endorsement by CNLA, A2LA or other government agency.

6 INSTRUMENT AND CALIBRATION

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 test and MEASURement equipment

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. other equivalent standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective manual.

Open Area Test Site # I					
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE	
SITE NSA	CCS	I Site	N/A	09/17/2005	
MEASURE RECEIVER	SCHAFFNER	SCR3501	338	07/05/2005	
SPECTRUM ANALYZER	ADVANTEST	R3132	120900008	No Calibration Required	
ANTENNA	SCHAFFNER	CBL 6112B	2809	09/26/2005	
AMPLIFIER	SCHAFFNER	CPA9231A	3626	10/08/2005	
CABLE	BELDEN	9913	N-TYPE #I1	10/08/2005	
ATTENUATOR	MCL	UNAT-6	AT06-3	10/08/2005	
THERMO- HYGRO METER	TFA	N/A	NO.2	11/23/2004	
	Abo	ove 1GHz Used			
EMC ANALYZER (100Hz-22GHz)	HP	8566B	2937A06102	07/26/2005	
ANTENNA (1-18GHz)	ЕМСО	3115	5761	02/02/2005	
AMPLIFIER (1-26.5GHz)	HP	8449B	3008A01266	02/15/2005	
CABLE (1-18GHz)	JYEBAO HUBER+SUHNER	LL142 SUCOFLEX 104	SMA-RS1&2 SMA-RS3	02/15/2005	

Equipment Used for Emission Measurement

Note: The measurement uncertainty is less than +/- 3.36dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Conducted Emission Test Site # A					
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE	
TEST RECEIVER	R&S	ESHS20	840455/006	03/07/2005	
LISN (EUT)	SCHWARZBECK	NSLK 8127	8127382	01/05/2005	
LISN	SOLAR	8012-50-R-24-BNC	8305114	02/10/2005	
BNC CABLE	MIYAZAKI	5D-FB	BNC A1	01/30/2005	
THERMO- HYGRO METER	TOP	HA-202	9303-1	03/24/2005	

Note: The measurement uncertainty is less than +/-2.83dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

7 LINE CONDUCTED & RADIATED EMISSION TEST

7.1 LIMIT

Maximum permissible level of Line Conducted Emission

FREQUENCY	Class A (dBuV)		Class B (dBuV)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 10 meter

FREQUENCY	Class A (dBuV/m)	Class B (dBuV/m)	
(MHz)	Quasi-peak	Quasi-peak	
30 - 230	40	30	
230 - 1000	47	37	

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 3 meter

FREQUENCY	Class A (dBuV/m)	Class B (dBuV/m)		
(MHz)	Average	Peak	Average	Peak	
Above 1000	59.3	79.3	53.9	73.9	

Note: The lower limit shall apply at the transition frequency.

7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION

Procedure of Preliminary Test

- The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test system with EUT received AC power, 120V/60Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a EMI Test Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to the Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Receiver.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per step 10 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the AV. limit in Q.P. mode, then the emission signal was re-checked using an AV. detector.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	73	-29.50	Q	L1

Freq.	= Emission frequency in MHz
Read Level	= Uncorrected Analyzer/Receiver reading
Factor	= Insertion loss of LISN + Cable Loss
Level	= Read Level + Factor
Limit	= Limit stated in standard
Over Limit	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
L1	= Hot side
L2	= Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) - Limit (dBuV)

7.3 TEST PROCEDURE OF RADIATED EMISSION

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC power source, 120V/60Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per step 8 of the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst case condition(s) was recorded.

Data Sample:

Freq. MHz	Amptd dBuV/m	Margin dB	Limit dBuV/m	Reading dBuV	Factor dB/m	Reading Type (P/Q/A)	Pol. (H/V)
X.XX	26.2	-13.8	40	14	12.2	Q	Н

Freq. Reading Factor	 = Emission frequency in MHz = Uncorrected Analyzer/Receiver reading = Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain
Amptd	= Uncorrected Analyzer/Receiver reading + Factor
Limit	= Limit stated in standard
Margin	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
Н	= Antenna Polarization: Horizontal
V	= Antenna Polarization: Vertical

Calculation Formula

Margin (dB) = Amptd (dBuV/m) – Limit (dBuV/m)

7.4 TEST RESULTS

Line Conducted Emission

Model: ARC-625

Temperature: 20°C

Test Results: Passed

Test Mode: Mode 1 Humidity: 68% RH Tested by: Elvis Zeng

(The chart below shows the highest readings taken from the final data, see Appendix II for details.)

Six Highest Conducted Emission Readings									
Fre	quency Ran	ge Investig	ated	150 kHz to 30 MHz					
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)		
0.150	65.05	0.11	65.16	79.00	-13.84	Р	L1		
0.168	68.71	0.11	68.82	79.00	-10.18	Р	L1		
0.209	65.87	0.11	65.98	79.00	-13.02	Р	L1		
0.150	65.47	0.11	65.58	79.00	-13.42	Р	L2		
0.165	66.55	0.11	66.66	79.00	-12.34	Р	L2		
0.206	65.33	0.11	65.44	79.00	-13.56	Р	L2		

NOTE: The emission level was or more than 2dB below the Average limit, so no re-check anymore.

Radiated Emission

Model: ARC-625	Test Mode: Mode 1
Temperature: 24°C	Humidity: 70% RH
Test Results: Pass	Tested by: Elvis Zeng

(The chart below shows the highest readings taken from the final data, see Appendix II for details.)

Six Highest Radiated Emission Readings								
Frequency Range Investigated				30]	MHz to 1000) MHz at 1	Om	
Freq (MHz)	Amptd (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Reading (dBuV)	Factor (dB/m)	Reading Type (P/Q/A)	Pol. (H/V)	
167.2500	30.02	-9.98	40.00	41.38	-11.36	Р	V	
181.6000	31.01	-8.99	40.00	42.88	-11.87	Р	V	
250.0000	36.69	-10.31	47.00	44.57	-7.88	Р	V	
119.9160	36.44	-3.56	40.00	46.00	-9.56	Q	Н	
150.0000	29.61	-10.39	40.00	40.22	-10.61	Р	Н	
239.9000	36.27	-10.73	47.00	44.92	-8.65	Р	Н	

NOTE: 30M to 1000M test is Applicable CISPR 22 / EN 55022 standard.

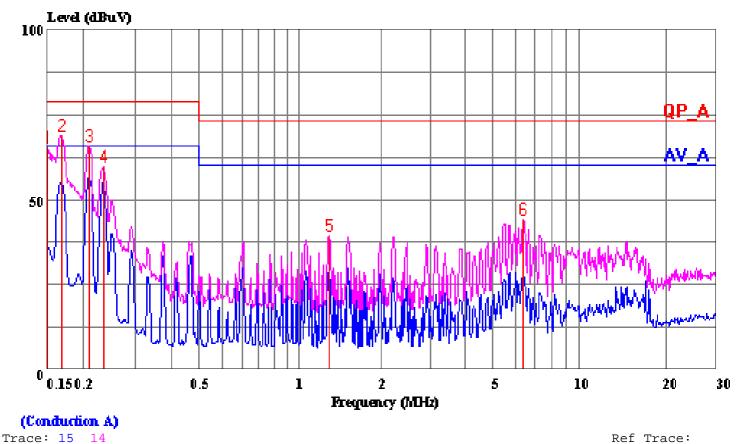
APPENDIX I - PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

APPENDIX II - TEST RESULT OF FINAL DATAS

Conducted Emission Plot


Radiated Emission Data

Data#: 16 File#: 41029408C.EMI

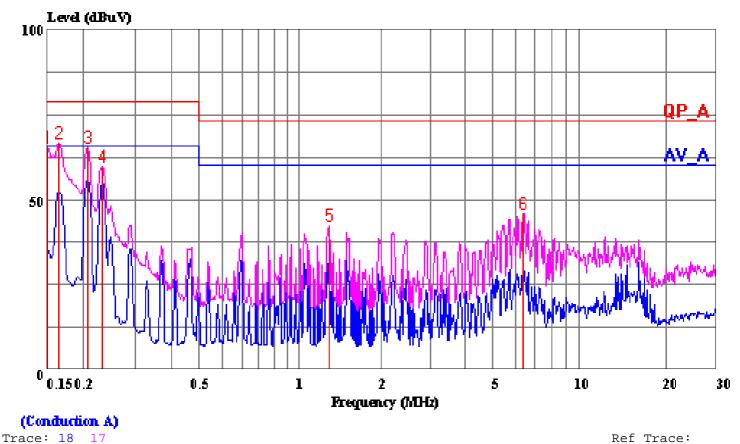
No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1029

Date: 2004-11-01 Time: 15:58:19

Ref Trace:

Condition: LI	NE
Report No. :	41029408
Test Engr. :	ELVIS ZENG
Company :	AAEON Technology Inc.
EUT :	ARC-625
Test Config :	EUT / ALL PERIPHERALS
Type of Test:	FCC CLASS A
Mode of Op. :	NORMAL MODE

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	0.150 0.168 0.209 0.234 1.403 6.488	65.05 68.71 65.87 59.41 39.37 43.94	0.11 0.11 0.11 0.11 0.15 0.40	65.98 59.52	79.00 79.00 79.00 73.00	-13.84 -10.18 -13.02 -19.48 -33.48 -28.66	Peak Peak Peak Peak


Page: 1

Data#: 19 File#: 41029408C.EMI

No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1029

Date: 2004-11-01 Time: 16:15:52

Ref Trace:

Condition: NEUTRAL
Report No. : 41029408
Test Engr. : ELVIS ZENG
Company : AAEON Technology Inc.
EUT : ARC-625
Test Config : EUT / ALL PERIPHERALS
Type of Test: FCC CLASS A
Mode of Op. : NORMAL MODE

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1 2 3 4	0.150 0.165 0.206 0.232	65.47 66.55 65.33 59.65	0.11 0.11 0.11	65.44 59.76	79.00 79.00 79.00	-13.42 -12.34 -13.56 -19.24	Peak Peak Peak
5 6	1.403 6.488	42.09 45.63	$0.15 \\ 0.40$	42.24 46.03		-30.76 -26.97	

Page: 1

Custom Name: AAEON Technology Inc. Model Name: ARC-625 Test Mode: NORMAL MODE

Project No.:41029408 Engineer Name:Elvis Zeng Date: 2004-10-28

Index: EN55022 Class-A 10m Vertical dBuV/m 80 Limit 70 -6 dB Peak 60 QP (50 8 40 5 6 7 4 30 20 10 MHz 0 100 300 30 EN55022 Class-A 10m Vertical dBuV/m 80. Limit -6 dB 70 Peak | 60 QP 🕴 50 40 9 b 1£ 30 20 10 MHz 0-1000 300 Freq(MHz) Peak(dBuV/m) QP(dBuV/m) Margin(dB) Limit(dBuV/m) Reading(dBuV) Factor(dB) Height Degree Comment 1 55.4000 25.83 -14.17 40.00 41.72 -15.89 100 0 65.2000 40.00 -16.41 0 2 26.13 -13.87 42.54 100 3 85.1000 28.13 -11.87 40.00 41.69 -13.56 100 0 133.3500 0 26.27 -13.73 40.00 36.23 -9.96 100 4 5 167.2500 30.02 -9.98 40.00 41.38 -11.36 100 0 0 6 181.6000 31.01 -8.99 40.00 42.88 -11.87 100 7 233.5500 31.16 -15.84 47.00 40.29 -9.13 100 0 8 250.0000 -10.31 47.00 -7.88 100 0 36.69 44.57 9 364.8500 29.64 -17.36 47.00 34.32 -4.68 100 0 10 0 47.00 394 433.2000 31.68 -15.32 34.37 -2.69 11 500.0000 35.10 -11.90 47.00 36.19 -1.09 394 0

Site I

Custom Name: AAEON Technology Inc. Model Name: ARC-625 Test Mode: NORMAL MODE
CONTRACTION OF CONTRACT OF CONTRACT OF CONTRACT.

Project No.:41029408 Engineer Name:Elvis Zeng Date: 2004-10-28

_dBu\	√/m	57.5	EN55	022 Cla	ss-A 10m	Horizonta	վ					03
												Lin
-			60						-			-6 6
												Pe
												QI
-	2		2	3 2		×	3		+	4	5	-
					2 7			-	*			
						1 T						
-	22	8	2			<u>8</u>	94 J.		8	27	85. 	28
-	6		0		<i>.</i>				-		1911	- 20
_	8								-	- 20		
30	202	107	35	50 NS	100				101			300
_dBu\	V/m	68	EN55	022 Cla	ss-A 10m	Horizonta	վ		33	0		325
												Lin
-									1	-		-6 6
-									2	-	_	Q1
_												Q.
		3										
-		6	18						°	-		-
-		×	ci						*			-8
_												
		3		(). ().			-					1
			3			- <u>_</u>			ļ			
300					F							1000
		2			Limit(dBuV/m)	Reading(dBuV)		0.000	Degree		Comme	nt
1		-9.56	18	22		46.00	-9.56	395	0			
2	125.0000	27.56	2	-12.44		37.26	-9.70	395	0			
3	150.0000	29.61	vi	-10.39	8	40.22	-10.61	395	0			
4 5	239.9000 250.0000	36.27 31.60		-10.73 -15.40	1 And a second s	44.92 39.48	-8.65 -7.88	395 395	0 0			
5 6	359.7500	33.01	8	-13.40		39.48	-4.83	395	0			
7	399.7500	29.94	70. 7	-17.06	2	33.60	-3.66	100	0			
8	500.0500	34.79		-12.21	47.00	35.88	-1.09	100	0			
9	799.4500	34.36	89	-12.64	8	31.77	2.59	100	0			
										-		
			4 5	2 2					96 (8 66 (8			
				111								

Site I