EMC COMPLIANCE TEST REPORT **FOR** #### **CPU BOARD** **MODEL: PCM-6898 (N)** **REPORT NUMBER: 01E9672** **ISSUE DATE: August 30, 2001** Prepared for AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. Prepared by COMPLIANCE ENGINEERING SERVICES, INC. No. 199, CHUNG SHENG ROAD HSIN TIEN CITY, TAIPEI, TAIWAN R.O.C. > TEL: (02) 2217-0894 FAX: (02) 2217-1254 U.S.A.: P.O.BOX 612650, SAN JOSE, CA 95161-2650 TAIPEI: P.O.BOX 17-82, HSIN TIEN, TAIWAN, R.O.C. ## 中華民國經濟部標準檢驗局 全北市廣南路一股四號 BUREAU OF STANDARDS, METROLOGY AND INSPECTION MINISTRY OF ECONOMIC AFFAIRS, REPUBLIC OF CHINA. 4, SEC. 1, CHINAN ROAD, TAIPEL, TAIWAN, R. O. C. Tel. 886-2-23431700 FAX: 886-2-23932324 To: Compliance Engineering Services, INC. IN REPLY REFER TO 89-3-3000061 No.199 Chung Sheng Road, Hsin Tien City, Taipei Hsien, Taiwan, R.O.C. This Designation Document confirms that your subject measurement facility has been validated according to the ISO/IEC Guide 25-1990 and found to be in compliance with the requirements of "Operation Guidelines of the Approval and Management of Designated EMC Laboratories." The description of your facility has, therefore, been placed on file and the name of your organization added to the Bureau's list of facilities whose measurement data and test reports will be accepted as a basis for attesting conformity to CNS13438-1997 / CISPR22-1993, CNS13783-1-1996/ CISPR14 - 1993, CNS13439-1997 / CISPR13-1990 for Information Technology Equipment household appliances / tools broadcast receivers and related equipments. It is located at: http://www.bsmi.gov.tw Please reference the file numbers below in the body of all test reports containing measurements made on the corresponding facility. For your EMI Testing Lab, use reference "SL2-IN-E-0005 SL2-R1-E-0005, SL2-R2-E-0005, SL2-A1-E-0005" Note that this filing must be updated for any changes made to the documentation and / or facility and whenever major modifications to your documentation or major construction or repairs to your facility are completed, re-submission of the related information or the site attenuation characteristics will be required within 2 weeks. The Designation is valid through January 10, 2003. Chen Jeo Ch Taipei, February 3, 2000 For BSMI, MOEA Chen Tso-Chen Director General ## EC-Declaration of Conformity | For the following equipmen | nt: | | |--|---|---| | CPU BOARD | | | | (Product Name) | | | | PCM-6898 (N) | | | | (Model Designation / Trade 1
N/A | name) | | | (Manufacturer Name) AAEON Technology Inc. | | | | (Manufacturer Address) | | | | 5F, No. 135, Lane 235, Pao | Chiao Rd., Hsin-Tien City, T | Caipei, Taiwan, R. O. C. | | Approximation of the Laws (89/336/EEC, Amended by | s of the Member States relating 92/31/EEC, 93/68/EEC & 98 ility (89/336/EEC, Amended | tet out in the Council Directive on the ag to Electromagnetic Compatibility Directive 8/13/EC), For the evaluation regarding the by 92/31/EEC, 93/68/EEC & 98/13/EC), the | | EN 61000-3-3: 1993 EN 55024: 1998 IEC 61000-4-2: 1993 IEC 61000-4-5: 1993 | 05 + A2: 2000; IEC 61000-4-3
05; IEC 61000-4-6: 1996, IEC
or / importer or authorized rep | 3: 1995; IEC 61000-4-4: 1995; | | (Company Name) | | | | (Company Address) | | | | Person responsible for mak | ing this declaration: | | | (Name, Surname) | | | | (Position / Title) | | | | (Place) | (Date) | (Legal Signature) | ## TABLE OF CONTENTS | DESCRIPTION | PAGE | |---|------| | VERIFICATION OF COMPLIANCE | 3 | | GENERAL INFORMATION | 4 | | SYSTRM DESCRIPTION | 5 | | PRODUCT INFORMATION | 6 | | SUPPORT EQUIPMENT | 7 | | TEST EQUIPMENT | 8 | | SECTION 1 EN 55022(LINE CONDUCTED & RADIATED EMISSION) | 12 | | MEASUREMENT PROCEDURE & LIMIT (LINE CONDUCTED EMISSION TEST) | 12 | | MEASUREMENT PROCEDURE & LIMIT (RADIATED EMISSION TEST) | 15 | | BLOCK DIAGRAM OF TEST SETUP | 17 | | SUMMARY DATA | 18 | | SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION/FLICKER) | 21 | | BLOCK DIAGRAM OF TEST SETUP | 21 | | RESULT | 21 | | SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE) | 32 | | BLOCK DIAGRAM OF TEST SETUP | 32 | | TEST PROCEDURE | 33 | | PERFORMANCE & RESULT | 33 | | SECTION 4 IEC 61000-4-3 (RADIATED ELECTROM AGNETIC FIELD) | 34 | | BLOCK DIAGRAM OF TEST SETUP | 34 | | TEST PROCEDURE | 35 | | PERFORMANCE & RESULT | 36 | | SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST) | 37 | | BLOCK DIAGRAM OF TEST SETUP | 37 | | TEST PROCEDURE | 38 | | PERFORMANCE & RESULT | 38 | | DESCRIPTION | PAGE | |--|-----------| | SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY) | 39 | | BLOCK DIAGRAM OF TEST SETUP | 39 | | TEST PROCEDURE | 40 | | PERFORMANCE & RESULT | 40 | | SECTION 7 IEC 61000-4-6 (CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS) | 41 | | BLOCK DIAGRAM OF TEST SETUP | 41 | | TEST PROCEDURE | 42 | | PERFORMANCE & RESULT | 43 | | SECTION 8 IEC 61000-4-8 (Power Frequency Magnetic Field)) | 44 | | BLOCK DIAGRAM OF TEST SETUP | 44 | | TEST PROCEDURE | 45 | | PERFORMANCE & RESULT | 46 | | SECTION 9 IEC 61000-4-11 (VOLTAGE DIP/INTERRUPTION | 47 | | BLOCK DIAGRAM OF TEST SETUP | 47 | | TEST PROCEDURE | 48 | | PERFORMANCE & RESULT | 48 | | APPENDIX 1 PHOTOGRAPHS OF TEST SETUP | 49 | | EN 55022 TEST EN 61000-3-2 TEST EN 61000-3-3 TEST IEC 61000-4-2 TEST IEC 61000-4-3 TEST IEC 61000-4-4 TEST IEC 61000-4-5 TEST IEC 61000-4-6 TEST IEC 61000-4-11 TEST | | | APPENDIX 2 PHOTOGRAPHS OF EUT | 61 | | APPENDIX 3 CONDUCTED EMISSION PLOT & RADIATED EM DATA | ISSION 66 | #### VERIFICATION OF COMPLIANCE Equipment Under Test: CPU BOARD Trade Name: N/A Model Number: PCM-6898 (N) Agency Series: N/A Applicant: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. Manufacturer: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. Type of Test: EMC Directive 89/336/EEC for CE Marking Technical Standards: EN 55022: 1998 EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 EN 61000-3-3: 1995 EN 55024: 1998 (IEC 61000-4-2: 1995 + A2: 2000, IEC 61000-4-3: 1995, IEC 61000-4-4: 1995, IEC 61000-4-5: 1995, IEC 61000-4-6: 1996, IEC 61000-4-11: 1994) File Number: 01E9672 Date of test: August 6 ~ August 22, 2001 Deviation: N/A Condition of Test Sample: Normal The above equipment was tested by Compliance Engineering Services, Inc. for compliance with the requirements set forth in EMC Directive 89/336/EEC and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements. The test results of this report relate only to the tested sample identified in this report. Approved by Authorized Signatory: RICK YEO / EMC MANAGER 3 of 66 #### **GENERAL INFORMATION** Applicant: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. Contact Person: Jack Chao / Deputy Director Manufacturer: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. File Number: 01E9672 **Date of Test:** August $6 \sim \text{August } 22,2001$ **Equipment Under Test:** CPU BOARD **Model Number:** PCM-6898 (N) **Agency Series:** N/A **Type of Test:** EMC Directive 89/336/EEC for CE Marking **Technical Standards:** EN 55022: 1998 EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 EN 61000-3-3: 1995 EN 55024: 1998 (IEC 61000-4-2: 1995 + A2: 2000, IEC 61000-4-3: 1995, IEC 61000-4-4: 1995, IEC 61000-4-5: 1995, IEC 61000-4-6: 1996, IEC 61000-4-11: 1994) **Frequency Range** (EN 55022): 150kHz to 30MHz for Line Conducted Test 30MHz to 1000MHz for Radiated Emission Test Test Site: Compliance Engineering Services, Inc. No. 199, Chung Sheng Road Hsin Tien City, Taipei Taiwan, R. O. C. #### **SYSTEM DESCRIPTION** #### **EUT Test Procedure:** - 1. Windows 98 Boots System. - 2. Run Winemc. Exe To Activate All Peripherals And Display "H" Pattern On Monitor Screen. - 3. Run ReadWrite.Exe to Link EUT and Notebook PC. - 4. Data Through the EUT and Transmit Between PC Systems and Notebook PC Via RJ45 Cable. #### PRODUCT INFORMATION **Housing Type:** METAL **EUT Power Rating:** Input: AC $100 \sim 127 \text{V}/5 \text{A}/60 \text{Hz}$; $200 \sim 240 \text{V}/2.5 \text{A}/50 \text{Hz}$ Output: DC +3.3V: 25A, +5V: 12A, +12V: 5A, -5V: 0.2A, -12V: 1A, +5Vsb: 2A **AC power during Test:** AC 230, 50Hz **Power Supply Manufacturer:** CEMACS **Power Supply Model Number:** ENP-181 **AC Power Cord Type:** Unshielded, 1.8m (Detachable) **OSC/Clock Frequencies**: X1 = 14.318 MHz, X3 = 24.576 MHz, X4 = 14.318 MHz, Y2 = 25 MHz #### I/O Port of EUT: | I/O PORT TYPES | Q'TY | TESTED WITH | |----------------|------|-------------| | 1). USB Port | 2 | 2 | | 2). PS/2 Port | 2 | 2 | | 3). RJ45 Port | 1 | 1 | | 4). DB9 Port | 2 | 2 | | 5). DB15 Port | 2 | 2 | | 6). DB25 Port | 1 | 1 | | 7). Phone Jack | 3 | 3 | | 8). RCA | 1 | 1 | Note: N/A ## **SUPPORT EQUIPMENT** #### **Host Computer:** | Equipment | Model# | Serial# | Trade Name | |------------------|------------------|---------|------------| | HDD | 72700AP | N/A | Maxtor | | RAM (SDRAM 64MB) | NT56V6620C0T-75S | N/A | NANYA | | CPU | P-III 800MHz | N/A | INTEL | | Chassis | ARC-6100 | N/A | N/A | | Power Supply | ENP-181 | N/A | CEMACS | #### **External
Peripheral Devices:** | No | Equipment | Model | Serial | FCC | Trade | Data | Power | |-----|----------------|-----------------------------|--------------|-------------|-----------|------------------------------------|---------------------------------------| | | | # | # | ID | Name | Cable | Cord | | 1. | Keyboard | 6311-TW4C/6 | N/A | DoC | ACER | Un-Shielded,
1.8m | N/A | | 2. | Mouse | M-BB48 | LZE93851294 | DoC | Logitech | Un-Shielded,
1.8m | N/A | | 3. | Mouse | M-S34 | LZE02353706 | DZL211029 | Logitech | Un-Shielded,
1.8m | N/A | | 4. | Mouse | M-BB46 | N/A | DoC | Logitech | Un-Shielded,
1.8m | N/A | | 5. | Player | RQ-L317 | N/A | N/A | Panasonic | Un-Shielded,
0.8m | N/A | | 6. | EAR.
& MIC. | MSB-206 | N/A | N/A | E.SENSE | Un-Shielded,
2.2m | N/A | | 7. | Joystick | SIDEWINDER
PRECISION PRO | N/A | N/A | Microsoft | Un-Shielded,
2.2m | N/A | | 8. | Server PC | Valiant 6380iPID | SPL052980024 | DoC | KDS | Un-Shielded,
30m (RJ45) | Unshielded,
1.8m | | 9. | Monitor | RN15AS | N/A | DoC | SAMSUNG | Un-Shielded, 1m | Unshielded,
1.8m
A Ferrite Core | | 10. | Monitor | SYNCMASTER959NF | N/A | DoC | SAMSUNG | Shielded, 1.8m
Two Ferrite Core | Unshielded,
1.8m | | 11. | Modem | 1414 | N/A | IFAXDM1414 | ACEEX | Shielded,
1.4m | Unshielded,
1.8m | | 12. | Modem | 231AA | A25331083841 | BFJ9D9308US | HAYES | Shielded,
1m | Unshielded,
1.8m | | 13. | Printer | 2225C+ | 2927S50444 | DSI6XU2225 | НР | Shielded,
1.8m | Unshielded,
1.8m | **Note:** All the above equipment/cables were placed in worse case positions to maximize emission signals. **Grounding:** Grounding was in accordance with the manufacturer's requirements and conditions for the intended use. ## **TEST EQUIPMENT LIST (EMISSION)** **Instrumentation:** The following list contains equipment used at Compliance Engineering Services, Inc.. for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2-1988 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 9kHz to 1.0 / 2.0 GHz. #### **Equipment used during the tests:** Open Area Test Site: #D | | | | | Cal Date | Due Date | |---------------------|----------------|----------------------|------------|----------|----------| | Equipment | Manuf. | Model No. | Serial No. | | | | EMI TEST
DISPLAY | R&S | DSAI-D 804.8932.52 | 827832/001 | 11/05/00 | 11/05/01 | | EMI TEST RF
UNIT | R&S | ESBI-RF/1005.4300.52 | 827832/003 | 11/05/00 | 11/05/01 | | AMPLIFIER | HP | 8447D A | 2727A05764 | 05/07/01 | 05/07/02 | | ANTENNA | SCHWARZBECK | VULB 9160 | 3104 | 05/17/01 | 05/17/02 | | CABLE | TIME MICROWAVE | LMR-400 | N-TYPE02 | 07/09/01 | 07/09/02 | Open Area Test Site: # E | | | | | Cal Date | Due Date | |------------------------|----------------|-----------|------------|----------|----------| | Equipment | Manuf. | Model No. | Serial No. | | | | SPECTRUM
ANALYZER | H.P. | 8566B | 2937A06102 | 06/06/01 | 06/06/02 | | SPECTRUM
DISPLAY | H.P. | 85662A | 2848A18276 | 06/06/01 | 06/06/02 | | QUASI-PEAK
DETECTOR | H.P. | 85650A | 2811A01439 | 06/07/01 | 06/07/02 | | AMPLIFIER | H.P. | 8447D B | 1644A02328 | 05/07/01 | 05/07/02 | | ANTENNA | EMCO | 3142 | 1310 | 06/30/01 | 06/30/02 | | CABLE | TIME MICROWAVE | LMR-400 | N-TYPE04 | 07/09/01 | 07/09/02 | ## **◯** Conducted Area Test Site: # E | | | | | Cal Date | Due Date | |------------------|---------------|--------------|------------|----------|----------| | Equipment | Manuf. | Model No. | Serial No. | | | | TEST
RECEIVER | R&S | ESHS20 | 840455/006 | 03/15/01 | 03/15/02 | | LISN | EMCO | 3825/2 | 1842 | 01/10/01 | 01/10/02 | | LISN(EUT) | ЕМСО | 3825/2 | 1435 | 01/10/01 | 01/10/02 | | ISN | FISHER CUSTOM | FCC-TLISN-T4 | 20065 | 04/23/01 | 04/23/02 | The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument. ## TEST EQUIPMENT LIST For Power Harmonic & Voltage Fluctuation/Flicker Measurement: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |-----------------------------------|-----------|--------------|------------|------------| | HP /
Harmonic & Flicker Tester | 6842A | 3531A-000142 | 06/15/2001 | 06/15/2002 | #### For ESD test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |-------------------|-----------|------------|------------|------------| | EMV SYSTEM / | CECD 2000 | 912006 | 12/07/2000 | 12/07/2001 | | ESD Generator | SESD 2000 | 812006 | 12/07/2000 | 12/07/2001 | For Radiated Electromagnetic Field immunity Measurement: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |------------------------------|-----------|------------|----------------|----------------| | R&S / Signal Generator | SMY 02 | DE13751 | 01/11/2001 | 01/11/2002 | | IFI / | EFS-5 | A066 | 07/02/2001 | 07/02/2002 | | "E" Field sensor/ Light | | | | | | Modulator Transmitter | | | | | | IFI / Combination Amplifier | SMX100 | 2067-1196 | 06/28/2001 | 06/28/2002 | | IFI / Leveling Pre-Amplifier | LPA-5B | 714-0695 | 05/01/2001 | 05/01/2002 | | EMCO / Biconilog Antenna | 3142 | 9609-1087 | No Calibration | No Calibration | | _ | | | Required | Required | #### For Fast Transients/Burst test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |----------------------|-----------|------------|----------------|----------------| | KeyTek Instruments / | E421 | 9502326 | 10/30/2000 | 10/30/2001 | | EFT Generator | | | | | | KeyTek Instruments / | CCL-4 | 9503290 | No Calibration | No Calibration | | Capacitive Clamp | | | Required | Required | For Surge Immunity test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |--|-----------|------------|------------|------------| | Surger Generator | E501 | 9502324 | 10/30/2000 | 10/30/2001 | | KeyTek Instruments | | | | | | Telecom Lines Coupler DECOUPLER KeyTek Instruments | CM-TELCD | 0104399 | 05/01/2001 | 05/01/2002 | | I/O Signal Line
DECOUPLER
KeyTek Instruments | CM-I/OCD | 0103234 | 05/01/2001 | 05/01/2002 | #### For CS test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |------------------------------|----------------|------------|------------|------------| | R&S / Signal Generator | SMY 02 | DE13751 | 01/11/2001 | 01/11/2002 | | IFI / Combination Amplifier | SMX100 | 2067-1196 | 06/28/2001 | 06/28/2002 | | IFI / Leveling Pre-Amplifier | LPA-5B | 714-0695 | 05/01/2001 | 05/01/2002 | | FISCHER / | FCC-801-M3-16A | 99122 | 10/01/2000 | 10/01/2001 | | Power Line Coupling | | | | | | Decoupling Network | | | | | | FISCHER / | F-120-9B | 54 | 09/17/2000 | 09/17/2001 | | Bulk Current Injection Probe | | | | | | Narda / | 769-6 | 02541 | 10/06/2000 | 10/06/2001 | | High Power Attenuator | | | | | For Power Frequency Magnetic Field test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |----------------------|-----------|------------|----------------|----------------| | Haefely / | MAG 100.1 | 081436-02 | 09/28/2000 | 09/28/2001 | | Magic Field Tester | | | | | | Extech Electronics / | CFC-105 | 810390 | No Calibration | No Calibration | | Frequency Converter | | | Required | Required | | BelMERIT / | DA 435 | 5A6 003019 | 10/11/2000 | 10/11/2001 | | AC/DC Clamp Meter | | | | | For Voltage Dips/Short Interruption and Voltage Variation Immunity test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |-----------------------------|------------|------------|------------|------------| | Haefely / | PLINE 1610 | 081568-06 | 09/16/2000 | 09/16/2001 | | Dips/Inerruption/Variations | | | | | | Tester | | | | | | FLUKE / | 79-II | 66400869 | 01/10/2001 | 01/10/2002 | | 79 Series Ii Multimeter | | | | | #### SECTION 1 EN 55022 (LINE CONDUCTED & RADIATED EMISSION) # MEASUREMENT PROCEDURE (PRELIMINARY LINE CONDUCTED EMISSION TEST) - 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2) Support equipment, if needed, was placed as per EN 55022. - 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022. - 4) The EUT received DC power through Host PC and Line Impedance Stabilization Network (LISN) which supplied power source of 230VAC/ 50Hz and was grounded to the ground plane. - 5) All support equipment received power from a second LISN supplying power of 110VAC/60Hz, if any. - 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7) Analyzer / Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes. - 8) During the above scans, the emissions were maximized by cable manipulation. - 9) The following test mode were scanned during the preliminary test: #### Mode: #### 1. Normal Mode (Data No. : 9672E#59, 67; Date: 08/10/2001) 10) After the preliminary scan, we found the following test mode producing the highest emission level. #### Mode: 1. Then, the EUT configuration and cable configuration of the above highest
emission level were recorded for reference of final testing. # MEASUREMENT PROCEDURE (FINAL LINE CONDUCTED EMISSION TEST) - 1) EUT and support equipment was set up on the test bench as per step 10 of the preliminary test. - 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Q.P. mode, then the emission signal was re-checked using an A.V. detector. - 3) The test data of the worst case condition(s) was reported on the Summary Data page. #### **Data Sample:** | | Meter | | Corrected | | | Reading | | |-------|---------|------|-----------|----------|--------|---------|---------| | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Line | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dBuV/m) | (dB) | (P/Q/A) | (L1/L2) | | X.XX | X.XX | X.XX | 38.38 | 56.00 | -17.62 | P | L1 | C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral A=Average Reading Comments: N/A ## **LINE CONDUCTED EMISSION LIMIT (EN 55022)** | Frequency | Maximum RF Line Voltage | | | | | |---------------|-------------------------|-----------|--|--|--| | | Q.P. | AVERAGE | | | | | 150kHz-500kHz | 66-56dBuV | 56-46dBuV | | | | | 500kHz-5MHz | 56dBuV | 46dBuV | | | | | 5MHz-30MHz | 60dBuV | 50dBuV | | | | **Note:** The lower limit shall apply at the transition frequency. # MEASUREMENT PROCEDURE (COMMON MODE CONDUCTED EMISSION MEASUREMENT) - 1) Selecting ISN for unscreened cable or a current probe for screened cable to take measurement. - 2) The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition. - 3) Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report. - 4) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. - 5) In case of measuring on the screened cable, the current limit shall be applied, otherwise the voltage limit should be applied. - 6) The following test mode(s) were scanned during the preliminary test: #### Mode: - 1. Lan Port (RJ45) 10M (Data No.: 9672E# 38; Date: 08/07/2001) - 2. Lan Port (RJ45) 100M (Data No.: 9672E# 51; Date: 08/07/2001) - 7) After the preliminary scan, we found the following test mode(s) producing the highest emission level and test date of the worst case was reported on the summary data page. Mode: 1. #### **Data Sample:** | I | Freq | Meter Reading | C.F. | Corrected Reading | Limits | Margin | Reading Type | |---|-------|---------------|------|-------------------|----------|--------|--------------| | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dBuV/m) | (dB) | (P/Q/A) | | | X.XX | X.XX | X.XX | 59.26 | 74.00 | -14.74 | P | C.F.(Correction Factor)=Insertion Loss (9.5dB) + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading Q=Quasi-peak A=Average Reading Comments: N/A ## COMMON MODE CONDUCTED EMISSION LIMIT AT TELECOMMUNICATION PORTS | V CE-Mark (EN 55022:1998) | | | | | | | | | |---------------------------|---------------|---|-------|-------|-------|--|--|--| | CLASS | Measuring | Measuring Voltage limit dB(uV) Current limit dB(uA) | | | | | | | | | Band | Q.P. | AV | Q.P. | AV | | | | | D | 150kHz-500kHz | 84-74 | 74-64 | 40-30 | 30-20 | | | | | В | 500kHz-30MHz | 74 | 64 | 30 | 20 | | | | **Note:** The lower limit shall apply at the transition frequency. 14 of 66 ## MEASUREMENT PROCEDURE (PRELIMINARY RADIATED EMISSION TEST) - 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2) Support equipment, if needed, was placed as per EN 55022. - 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022. - 4) The EUT received DC power source from Host PC (AC 230V/50Hz) to the outlet socket under the turntable. All support equipment received 110VAC/60Hz power from another socket under the turntable, if any. - 5) The antenna was placed at 10 meter away from the EUT as stated in EN 55022. The antenna connected to the analyzer via a cable and at times a pre-amplifier would be used. - 6) The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. - 7) The following test mode were scanned during the preliminary test: Mode: - 1. Normal Mode (Data No.: 9462D# 9, 10; Date: 08/06/2001) - 8) After the preliminary scan, we found the following test mode producing the highest emission level. Mode: 1. Then, the EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for final testing. # MEASUREMENT PROCEDURE (FINAL RADIATED EMISSION TEST) - 1) EUT and support equipment were set up on the turntable as per step 8 of the preliminary test. - 2) The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. - 3) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Peak reading is presented. If EUT emission level was less-2dB to the limit, then the emission signal was re-checked using a Q.P. detector. - 4) The test data of the worst case condition(s) was reported on the Summary Data page. #### **Data Sample:** | | Meter | | Corrected | | | Reading | | |-------|---------|--------|-----------|----------|--------|---------|------| | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Pol. | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | P/Q/A | H/V | | X.XX | X.XX | X.XX | 30.82 | 37.00 | -5.18 | P | V | C.F.(Correction Factor)=Antenna Factor + Cable Loss + Attenuator(6dB) - Amplifier Gain Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading H=Horizontal Polarization/Antenna Q=Quasi-peak V=Vertical Polarization/Antenna A=Average Reading Comments: N/A ## **RADIATED EMISSION LIMIT** | Frequency (MHz) | Distance (m) | Maximum Field Strength Limit (dBu V/m/ Q.P.) | |-----------------|--------------|--| | 30-230 | 10 | 30 | | 230-1000 | 10 | 37 | **Note:** The lower limit shall apply at the transition frequency. 16 of 66 ## **BLOCK DIAGRAM OF TEST SETUP** #### **System Diagram of Connections between EUT and Simulators** **EUT: CPU BOARD** Model Number: PCM-6898 (N) # SUMMARY DATA (LINE CONDUCTED TEST) **Model Number:** PCM-6898 (N) **Location:** Site # E Tested by: James Liao **Test Model:** Mode 1 Test Results: Passed **Temperature:** 30°C **Humidity:** 56%RH (The chart below shows the highest readings taken from the final data) | | Six Highest Conducted Emission Readings | | | | | | | | | | |-----------|---|----------|-----------|--------|------------|----------|---------|--|--|--| | Frequency | Range Inves | stigated | | | 150 kHz T0 | O 30 MHz | | | | | | | Meter | | Corrected | | | Reading | | | | | | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Line | | | | | (MHz) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dB) | (P/Q/A) | (L1/L2) | | | | | 0.598 | 40.04 | 0.06 | 40.10 | 56.00 | -15.90 | P | L1 | | | | | 0.404 | 41.79 | 0.05 | 41.84 | 57.77 | -15.93 | P | L2 | | | | | 0.627 | 40.39 | 0.06 | 40.45 | 56.00 | -15.55 | P | L2 | | | | | 0.994 | 39.67 | 0.08 | 39.75 | 56.00 | -16.25 | P | L2 | | | | | 1.071 | 39.95 | 0.08 | 40.03 | 56.00 | -15.97 | P | L2 | | | | | 7.137 | 44.56 | 0.31 | 44.87 | 60.00 | -15.13 | P | L2 | | | | C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral A=Average Reading Comments: N/A #### **SUMMARY DATA** ## (COMMON MODE CONDUCTED EMISSION MEASUREMENT) **Model Number:** PCM-6898 (N) **Location:** Site # E **Tested by:** James Liao Test Mode: Mode 1 Test Results: Passed **Temperature:** 32°C **Humidity:** 60%RH (The chart below shows the highest readings taken from the final data) | | Six Highest Conducted Emission Readings | | | | | | | | |---------------|---|--------|--------------------------------|-------------------|----------------|-------------------------|--|--| | Frequency 1 | Range Investi | igated | | 150 kHz TO 30 MHz | | | | | | Freq
(MHz) | Meter
Reading
(dBuV) | C.F. | Corrected
Reading
(dBuV) | Limits
(dBuV) | Margin
(dB) | Reading Type
(P/Q/A) | | | | 0.150 | 51.47 | 9.52 | 60.99 | 84.00 | -23.01 | P | | | | 0.299 | 39.79 | 9.52
 49.31 | 78.28 | -28.97 | P | | | | 0.393 | 45.77 | 9.55 | 55.32 | 75.99 | -20.67 | P | | | | 0.595 | 49.99 | 9.56 | 59.55 | 74.00 | -14.45 | P | | | | 0.788 | 43.31 | 9.57 | 52.88 | 74.00 | -21.12 | P | | | | 9.966 | 38.75 | 9.84 | 48.59 | 74.00 | -25.41 | A | | | | 10.000 | 66.98 | 9.84 | 76.82 | 84.00 | -7.18 | Q | | | C.F.(Correction Factor)=Insertion Loss (9.5dB) + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading Q=Quasi-peak A=Average Reading Comments: According to Note 3 on Table 4 of EN 55022:1998 standard, the limits allowed to relaxation of 10 dB over at frequency range 6 MHz to 30 MHz # SUMMARY DATA (RADIATED EMISSION TEST) **Model Number:** PCM-6898 (N) **Location:** Site # D **Tested by:** James Liao **Polar:** Vertical / Horizontal – 10m **Test Mode:** Mode 1 Test Results: Passed **Temperature:** 32°C **Humidity:** 60%RH (The chart below shows the highest readings taken from the final data) | | Six Highest Radiated Emission Readings | | | | | | | | | | |-------------|--|-------------|----------------------------------|--------------------|-------------|--------------------------|-------------|--|--|--| | Frequency 1 | Range Invest | rigated | | 30 MHz TO 1000 MHz | | | | | | | | Freq (MHz) | Meter
Reading
(dBuV) | C.F. (dB/m) | Corrected
Reading
(dBuV/m) | Limits (dBuV/m) | Margin (dB) | Reading
Type
P/Q/A | Pol.
H/V | | | | | 199.994 | 35.72 | -10.01 | 25.72 | 30.00 | -4.29 | P | V | | | | | 533.445 | 32.47 | -0.36 | 32.11 | 37.00 | -4.89 | P | V | | | | | 797.006 | 27.41 | 5.04 | 32.45 | 37.00 | -4.55 | P | V | | | | | 199.828 | 35.21 | -10.01 | 25.21 | 30.00 | -4.80 | P | Н | | | | | 663.561 | 29.52 | 2.27 | 31.79 | 37.00 | -5.21 | P | Н | | | | | 930.356 | 26.60 | 7.38 | 33.98 | 37.00 | -3.02 | P | Н | | | | C.F.(Correction Factor)=Antenna Factor + Cable Loss + (Attenuator /6dB) - Amplifier Gain Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading H=Horizontal Polarization/Antenna Q=Quasi-peak V=Vertical Polarization/Antenna A=Average Reading Comments: N/A ## SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION/FLICKER) #### POWER HARMONICS MEASUREMENT **Port** : AC mains **Basic Standard** : EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 Limits : CLASS A **Tester** : Stanley Cheng Temperature : 26° C Humidity : 61% #### VOLTAGE FLUCTUATION/FLICKER MEASUREMENT **Port** : AC mains **Basic Standard** : EN 61000-3-3 : 1995 **Limits** : Section 5 of EN 61000-3-3 **Tester** : Stanley Cheng Temperature : 26° C Humidity : 61% #### **Block Diagram of Test Setup:** #### **Result:** Please see the attached test data. 21 of 66 Date: August 30, 2001 Project No: 01E9672 Approved by: . Signature: Date: Pinal Test Result: Settings and Test Conditions Compliant to the Standard: Yes Test Equipment Used: Agilent 6842A Harmonic/Flicker Test System with serial number: HFTS Software Version: A.05.03 Date Last Calibrated: Test Equipment Settings: Line Voltage: 230.00 V Line Frequency: 50 Hz Device Class: D RMS Current Limit: 13.1 A Peak Current Limit: 80.8 A Number of Records: 5625 Current Measurement Range: High Measurement Window Type: Rectangular Measurement Delay: 10 seconds Quasi-stationary Test Duration: 30.00 minutes Class Determination Pre-test Duration: 10.00 seconds Overrides: Test Limit Source (Power Measurements/Statistics): Maximum Power Overrides: None Test Limit Overrides: None Pre-test Results for Class Determination: Percent in Envelope: 63.0% Voltage THD Out-of-Specification?: No Class D Equipment?: No Fundamental Current: 0.305 A Class D Equipment?: Real Power: 65.8 W RMS Voltage: 229.8 V RMS Current: 0.3 A Apparent Power: 70.2 VA Frequency: 50.0 Hz Peak Current: 0.5 A Power Factor: 0.937 Voltage THD: 0.02% Maximum Power: 65.8 W Current THD: 11.65% Mean Power: 65.7 W Active Power Statistics: 95th Percentile: 65.8 99th Percentile: 65.8 W 100th Percentile: 65.8 W 50th Percentile: 65.8 W 90th Percentile: 65.8 W Total Number of Errors: Total Number of Failures: None None #### Pre-Test Source Voltage Harmonics Data: | Harmonic
Number | Limit (%) | Limit
(Volts) | Max
(%) | Max
(Volts) | | |--------------------|-----------|------------------|------------|----------------|--| | Fund. | | | 100.0 | 229.851 | | | 2 | 0.20 | 0.460 | 0.004 | 0.010 | | | 3 | 0.90 | 2.069 | 0.006 | 0.014 | | | 4 | 0.20 | 0.460 | 0.005 | 0.011 | | | 5
6 | 0.20 | 0.460 | 0.003 | 0.012 | | | 7 | 0.30 | 0.690 | 0.003 | 0.010 | | | é | 0.20 | 0.460 | 0.001 | 0.003 | | | 9 | 0.20 | 0.460 | 0.003 | 0.008 | | | 10 | 0.20 | 0.460 | 0.003 | 0.007 | | | 11 | 0.10 | 0.230 | 0.002 | 0.005 | | | 12 | 0.10 | 0.230 | 0.003 | 0.006 | | | 13 | 0.10 | 0.230 | 0.001 | 0.003 | | | 14 | 0.10 | 0.230 | 0.001 | 0.003 | | | 15 | 0.10 | 0.230 | 0.005 | 0.012 | | | 16 | 0.10 | 0.230 | 0.002 | 0.005 | | | 17 | 0.10 | 0.230 | 0.002 | 0.004 | | | 18 | 0.10 | 0.230 | 0.003 | 0.006 | | | 19 | 0.10 | 0.230 | 0.003 | 0.007 | | | 20 | 0.10 | 0.230 | 0.002 | 0.005 | | | 21 | 0.10 | 0.230 | 0.004 | 0.008 | | | 22 | 0.10 | 0.230 | 0.004 | 0.009 | | | 23 | 0.10 | 0.230 | 0.001 | 0.003 | | | 24 | 0.10 | 0.230 | 0.002 | 0.005 | | | 25 | 0.10 | 0.230 | 0.001 | 0.001 | | | 26 | 0.10 | 0.230 | 0.001 | 0.002 | | | 27 | 0.10 | 0.230 | 0.003 | 0.006 | | | 28 | 0.10 | 0.230 | 0.001 | 0.002 | | | 29 | 0.10 | 0.230 | 0.002 | 0.005 | | | 30 | 0.10 | 0.230 | 0.001 | 0.003 | | | 31 | 0.10 | 0.230 | 0.002 | 0.005 | | | 3.2 | 0.10 | 0.230 | 0.001 | 0.003 | | | 33 | 0.10 | 0.230 | 0.001 | 0.002 | | | 34 | 0.10 | 0.230 | 0.002 | 0.004 | | | 35 | 0.10 | 0.230 | 0.001 | 0.002 | | | 36 | 0.10 | 0.230 | 0.002 | 0.005 | | | 37 | 0.10 | 0.230 | 0.002 | 0.004 | | | 38 | 0.10 | 0.230 | 0.001 | 0.003 | | | 39 | 0.10 | 0.230 | 0.002 | 0.004 | | | 40 | 0.10 | 0.230 | 0.000 | 0.001 | | | Marmonic
Number | Standard
Limit
(A rms) | Maximum
Value
(A rms) | Maximum
Value
(% Limit) | Mean
Value
(A rms) | Mean
Value
(% Limit) | (A rms) | Deviation
(% Limit) | Pass
or
Pail | (P) | |--------------------|------------------------------|-----------------------------|-------------------------------|--------------------------|----------------------------|---------|------------------------|--------------------|-----| | Fund. | | 0.3061 | | 0.3030 | | 0.0010 | | | | | 2 | 1.0800 | 0.0006 | 0.1 | 0.0003 | 0.0 | 0.0001 | 0.0 | p | | | 3 | 2.3000 | 0.0264 | 1.1 | 0.0260 | 1.1 | 0.0001 | 0.0 | p | | | 4 | 0.4300 | 0.0006 | 0.1 | 0.0004 | 0.1 | 0.0000 | 0.0 | p | | | 5 | 1.1400 | 0.0111 | 1.0 | 0.0106 | 0.9 | 0.0002 | 0.0 | P | | | 6 | 0.3000 | 0.0005 | 0.2 | 0.0004 | 0.1 | 0.0000 | 0.0 | P | | | 7 | 0.7700 | 0.0016 | 0.2 | 0.0012 | 0.2 | 0.0001 | 0.0 | P | | | 8 | 0.2300 | 0.0004 | 0.2 | 0.0003 | 0.1 | 0.0000 | 0.0 | P | | | 9 | 0.4000 | 0.0050 | 1.3 | 0.0046 | 1.2 | 0.0002 | 0.0 | P | | | 10 | 0.1840 | 0.0004 | 0.2 | 0.0002 | 0.1 | 0.0000 | 0.0 | P | | | 11 | 0.3300 | 0.0065 | 2.0 | 0.0063 | 1.9 | 0.0001 | 0.0 | P | | | 12 | 0.1533 | 0.0004 | 0.2 | 0.0002 | 0.2 | 0.0000 | 0.0 | P | | | 13 | 0.2100 | 0.0088 | 4.2 | 0.0083 | 3.9 | 0.0002 | 0.1 | P | | | 14 | 0.1314 | 0.0004 | 0.3 | 0.0002 | 0.1 | 0.0000 | 0.0 | P. | | | 15 | 0.1500 | 0.0072 | 4.8 | 0.0066 | 4.4 | 0.0002 | 0.1 | P | | | 16 | 0.1150 | 0.0003 | 0.2 | 0.0002 | 0.1 | 0.0000 | 0.0 | P | | | 17 | 0.1324 | 0.0033 | 2.5 | 0.0028 | 2.1 | 0.0001 | 0.1 | P | | | 18 | 0.1022 | 0.0003 | 0.3 | 0.0001 | 0.1 | 0.0000 | 0.0 | P | | | 19 | 0.1184 | 0.0047 | 4.0 | 0.0045 | 3.8 | 0.0001 | 0.0 | P | | | 20 | 0.0920 | 0.0002 | 0.2 | 0.0001 | 0.1 | 0.0000 | 0.0 | P | | | 21 | 0.1071 | 0.0075 | 7.0 | 0.0073 | 6.8 | 0.0001 | 0.1 | P | | | 22 | 0.0836 | 0.0005 | 0.5 | 0.0003 | 0.4 | 0.0000 | 0.0 | P | | | 23 | 0.0978 | 0.0072 | 7.4 | 0.0068 | 6.9 | 0.0002 | 0.2 | P | | | 24 | 0.0767 | 0.0004 | 0.6 | 0.0003 | 0.4 | 0.0000 | 0.1 | p | | | 25 | 0.0900 | 0.0064 | 7.1 | 0.0061 | 6.8 | 0.0001 | 0.1 | P | | | 26 | 0.0708 | 0.0004 | 0.6
5.5 | 0.0043 | 5.2 | 0.0001 | 0.1 | p | | | 27
28 | 0.0833 | 0.0046 | 0.6 | 0.0003 | 0.4 | 0.0000 | 0.1 | P | | | 29 | 0.0657 | 0.0029 | 3.8 | 0.0022 | 2.9 | 0.0002 | 0.3 | P | | | 30 | 0.0613 | 0.0029 | 0.7 | 0.0003 | 0.5 | 0.0000 | 0.1 | P | | | 31 | 0.0726 | 0.0020 | 2.7 | 0.0003 | 2.4 | 0.0001 | 0.1 | P | | | 32 | 0.0575 | 0.0004 | 0.7 | 0.0003 | 0.5 | 0.0000 | 0.1 | P | | | 33 | 0.0682 | 0.0025 | 3.6 | 0.0023 | 3.3 | 0.0001 | 0.1 | P | | | 34 | 0.0541 | 0.0005 | 1.0 | 0.0004 | 0.7 | 0.0000 | 0.1 | P | | | 35 | 0.0643 | 0.0046 | 7.1 | 0.0042 | 6.5 | 0.0002 | 0.3 | p | | | 36 | 0.0511 | 0.0004 | 0.8 | 0.0002 | 0.4 | 0.0001 | 0.1 | p | | | 37 | 0.0608 | 0.0035 | 5.8 | 0.0031 | 5.2 | 0.0001 | 0.2 | P | | | 38 | 0.0484 | 0.0004 | 0.8 | 0.0003 | 0.5 | 0.0000 | 0.1 | P | | | 39 | 0.0577 | 0.0040 | 7.0 | 0.0037 | 6.4 | 0.0001 | 0.2 | P | | | 40 | 0.0377 | 0.0004 | 0.9 | 0.0003 | 0.7 | 0.0000 | 0.1 | p | | Final Test Statistics: | Harmonic
Number | Standard
Limit
(A rms) | Maximum
Value
(A rms) | Maximum
Value
(% Limit) | >50%
of Limit
(Count) | >75%
of Limit
(Count) | >90%
of Limit
(Count) | >95%
of Limit
(Count) | >100%
of Limit
(Count) | Pass(
or
Fail(| | |--------------------|------------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|----------------------|--| | Fund. | | 0.3061 | | | | | | | | | | 2 | 1.0800 | 0.0006 | 0.1 | 0 | 0 | 0 | | | | | | 3 | 2.3000 | 0.0264 | 1.1 | 0 | 0 | 0 | 0 | 0 | P | | | 4 | 0.4300 | 0.0006 | 0.1 | 0 | ů ů | 0 | ŏ | 0 | P | | | 5 | 1.1400 | 0.0111 | 1.0 | ő | 0 | ő | ŏ | 0 | p | | | 6 | 0.3000 | 0.0005 | 0.2 | ő | ő | ŏ | ő | ő | P | | | ž | 0.7700 | 0.0016 | 0.2 | ő | ő | ő | ő | ő | P | | | ė | 0.2300 | 0.0004 |
0.2 | ő | ő | ő | ŏ | ő | P | | | 9 | 0.4000 | 0.0050 | 1.3 | ő | ő | ő | ŏ | ő | p | | | 10 | 0.1840 | 0.0004 | 0.2 | ő | ő | ŏ | ŏ | ő | p | | | 11 | 0.3300 | 0.0065 | 2.0 | ő | ő | ő | ő | ő | P | | | 12 | 0.1533 | 0.0004 | 0.2 | ō | ō | ŏ | ŏ | 0 | P | | | 13 | 0.2100 | 0.0088 | 4.2 | 0 | o o | ō | ŏ | 0 | P | | | 14 | 0.1314 | 0.0004 | 0.3 | 0 | 0 | ō | ō | 0 | p | | | 15 | 0.1500 | 0.0072 | 4.8 | 0 | 0 | ō | ō | 0 | P | | | 16 | 0.1150 | 0.0003 | 0.2 | 0 | 0 | 0 | 0 | 0 | P | | | 17 | 0.1324 | 0.0033 | 2.5 | 0 | 0 | 0 | 0 | 0 | P | | | 18 | 0.1022 | 0.0003 | 0.3 | 0 | 0 | 0 | 0 | 0 | P | | | 19 | 0.1184 | 0.0047 | 4.0 | 0 | 0 | 0 | 0 | 0 | P | | | 20 | 0.0920 | 0.0002 | 0.2 | 0 | 0 | 0 | 0 | 0 | P | | | 21 | 0.1071 | 0.0075 | 7.0 | 0 | 0 | 0 | 0 | 0 | P | | | 22 | 0.0836 | 0.0005 | 0.5 | 0 | 0 | 0 | 0 | 0 | P | | | 23 | 0.0978 | 0.0072 | 7.4 | 0 | 0 | 0 | 0 | 0 | P | | | 24 | 0.0767 | 0.0004 | 0.6 | 0 | 0 | 0 | 0 | 0 | P | | | 25 | 0.0900 | 0.0064 | 7.1 | 0 | 0 | 0 | 0 | 0 | P | | | 26 | 0.0708 | 0.0004 | 0.6 | 0 | 0 | 0 | 0 | 0 | P | | | 27 | 0.0833 | 0.0046 | 5.5 | 0 | 0 | 0 | 0 | 0 | P | | | 28 | 0.0657 | 0.0004 | 0.6 | 0 | 0 | 0 | 0 | 0 | P | | | 29 | 0.0776 | 0.0029 | 3.8 | 0 | 0 | 0 | 0 | 0 | P | | | 30 | 0.0613 | 0.0004 | 0.7 | 0 | 0 | 0 | 0 | 0 | P | | | 31 | 0.0726 | 0.0020 | 2.7 | 0 | 0 | 0 | 0 | 0 | P | | | 32 | 0.0575 | 0.0004 | 0.7 | 0 | 0 | 0 | 0 | 0 | P | | | 33 | 0.0682 | 0.0025 | 3.6 | 0 | 0 | 0 | 0 | 0 | P | | | 34 | 0.0541 | 0.0005 | 1.0 | 0 | 0 | 0 | 0 | 0 | P | | | 35 | 0.0643 | 0.0046 | 7.1 | 0 | 0 | 0 | 0 | 0 | P | | | 36 | 0.0511 | 0.0004 | 0.8 | 0 | 0 | 0 | 0 | 0 | P | | | 37 | 0.0608 | 0.0035 | 5.8 | 0 | 0 | 0 | 0 | 0 | P | | | 38 | 0.0484 | 0.0004 | 0.8 | 0 | 0 | 0 | 0 | 0 | P | | | 39 | 0.0577 | 0.0040 | 7.0 | 0 | 0 | 0 | 0 | 0 | P | | | 40 | 0.0460 | 0.0004 | 0.9 | 0 | 0 | 0 | . 0 | 0 | P | | Remarks Approved by: Signature: Final Test Result: Settings and Test Conditions Compliant to the Standard: Yes Test Equipment Used: Agilent 6842A Harmonic/Flicker Test System with serial number: HFTS Software Version: A.05.03 Date Last Calibrated: Test Equipment Settings: Line Voltage: 230.00 V Pst Integration Time: 10 minutes Pst Integration Periods: 3 Line Frequency: 50 Hz Measurement Delay: 10.0 seconds RMS Current Limit: 13.1 A Test Duration: 00:30:00 Peak Current Limit: 80.8 A Overrides: Pst/Plt Test Limit Overrides: None RMS Test Limit Overrides: None Equipment Under Test Pre-test Results: RMS Voltage: 229.8 V RMS Current: 0.3 A Frequency: 50.0 Hz Peak Current: 0.5 A Apparent Power: 69.6 VA Voltage THD: 0.02% Current THD: 11.79% Power Factor: 0.936 Total Number of Errors: Total Number of Failures: None Dc: 0 Pst: 0 Plt: 0 Dmax: 0 Dt: Real Power: 65.2 W #### Final Test Summary: Dmax: 0.0 Pst: 0.07 P_0.1: 0.01 Dc: 0.0 Plt: 0.07 P_1s: 0.01 Dt: 0.00 Plt Threshold: 0.65 P_3s: 0.01 P_10s: 0.01 P_50s: 0.01 Final Test Data by Integration Period: Number of Integration Periods: 3 | Integratio
Periods | n Pst
(P.U.) | P_0.1
(P.U.) | P_1.0s
(P.U.) | P_3.0s
(P.U.) | P_10s
(P.U.) | P_50s
(P.U.) | Dc
(%) | Dmax
(%) | Dt
(seconds) | Pass(P
or
Fail(F | |-----------------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|-----------|-------------|-----------------|------------------------| | 1 2 | 0.07 | 0.01
0.01 | 0.01 | 0.01
0.01 | 0.01 | 0.01 | | | | N/A
N/A | | 3 | 0.07 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | | | N/A | Remarks ## **SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE)** #### ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST **Port** : Enclosure **Basic Standard**: IEC 61000-4-2 **Requirements** : ±4kV (Contact Discharge) ±4kV (Indirect Discharge) ±8kV (Air Discharge) **Performance Criteria**: B (Standard require) **Tested by** : Stanley Cheng **Temperature/Humidity:** 15° C / 55% ## **Block Diagram of Test Setup:** (The 470 k ohm resistors are installed per standard requirement) Ground Reference Plane #### **Test Procedure:** - 1. The EUT was located 0.1 m minimum from all side of the HCP. - 2. The support units were located 1 m minimum away from the EUT. - 3. A communication test program was loaded and executed in Windows mode. - 4. PC sent transmit data to remote side via EUT. - 5. As per the requirement of EN 55024; applying direct contact discharge at the sides other than front of EUT at minimum 50 discharges (25 positive and 25 negative) if applicable, can't be applied direct contact discharge side of EUT then the indirect discharge shall be applied. One of the test points shall be subjected to at least 50 indirect discharge (contact) to the front edge of horizontal coupling plane. - 6. Other parts of EUT where it is not possible to perform contact discharge then selecting appropriate points of EUT for air discharge, a minimum of 10 single air discharges shall be applied. - 7. The application of ESD to the contact of open connectors is not required. - 8. Putting a mark on EUT to show tested points. The following test condition was followed during the tests. The electrostatic discharges were applied as follows: | Amount of | Voltage | Coupling | Result (Pass/Fail) | |----------------|---------|--------------------------------|--------------------| | Discharges | | | , , , | | Mini 25 /Point | ±4kV | Contact Discharge | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge HCP (Front) | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Back) | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Left) | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Right) | Pass | | Mini 10 /Point | ±8kV | Air Discharge | Pass | ## **Performance & Result:** | Observa | tion: No any function degraded during the tests. | |-------------|--| | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Criteria A: | The apparatus continues to operate as intended. No degradation of performance loss of function is allowed below a performance level specified by the manufacture when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | #### SECTION 4 IEC 61000-4-3 (RADIATED ELECTROMAGNETIC FIELD) #### RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST Port : Enclosure **Basic Standard**: IEC 61000-4-3 **Requirements** : 3 V/m / with 80% AM. 1kHz Modulation **Performance Criteria**: A (Standard require) **Tester** : Stanley Cheng Temperature : 25° C Humidity : 62% Note : The EUT not have acoustic interfaces, the annex A of EN 55024 should not be applied. #### **Block Diagram of Test Setup:** #### **Test Procedure:** 1. The EUT and support units were located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity. - 2. Adjusting the cables to be exposed to the electromagnetic filed as possible. - 3. Performing a Radiated Emission Scan in range of 30 to 1000 MHz prior to do RS test and records the more higher emission frequencies for the reference of RS test, due to antenna effectiveness. - 4. Adjusting the monitoring camera to monitor the "H" message as clear as possible. - 5. Setting the testing parameters of RS test software per IEC 61000-4-3. - 6. Referring to the tested data of step 3 to performing the RS test from 80 to 1000 MHz. - 7. Recording the test result in following table. - 8. Changing the EUT to the other side and repeat step 3 to 6, until 4 sides of EUT were verified. #### IEC 61000-4-3 Final test conditions: Test level : 3V/m Steps : 1 % of fundamental Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Polarity | Position (°) | Result (Pass/Fail) | |-------------|-------|------------|----------|--------------|--------------------| | 80-1000 | 3V | Yes | Н | Front | Pass | | 80-1000 | 3V | Yes | V | Front | Pass | | 80-1000 | 3V | Yes | Н | Right | Pass | | 80-1000 | 3V | Yes | V | Right | Pass | | 80-1000 | 3V | Yes | Н | Back | Pass | | 80-1000 | 3V | Yes | V | Back | Pass | | 80-1000 | 3V | Yes | Н | Left | Pass | | 80-1000 | 3V | Yes | V | Left | Pass | # **Performance & Result:** | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | |---------------|--| | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced
by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | V PASS FAILED | | Observa | tion: No any function degraded during the tests. | # SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST) #### FAST TRANSIENTS/BURST IMMUNITY TEST **Port** : On Power Lines and Data Line **Basic Standard**: IEC 61000-4-4 **Requirements** : $\pm 1 \text{kV}$ for Power Supply Lines ±0.5kV to Data Line Performance Criteria : B (Standard require) **Tested by** : Stanley Cheng **Temperature** : 26° C **Humidity** : 61° #### **Block Diagram of Test Setup:** #### **Test Procedure:** 1. The EUT and support units were located on a wooden table 0.8 m away from ground reference plane. - 2. A 1.0 meter long power cord was attached to EUT during the test. - 3. The length of communication cable between communication port and clamp was keeping within 1 meter. - 4. A test program was loaded and executed in Windows mode. - 5. The data was display on the monitor and filling the screens. - 6. The test program exercised related support units sequentially. - 7. Repeating step 3 to 6 through the test. - 8. Recording the test result as shown in following table. #### **Test conditions:** Impulse Frequency: 5kHz **Performance & Result:** Tr/Th: 5/50ns Burst Duration: 15ms Burst Period: 300mS | Inject Line | Voltage kV | Inject Method | Result (Pass/Fail) | |-------------|------------|---------------|--------------------| | L1 | +/- 1 | Direct | Pass | | N | +/- 1 | Direct | Pass | | L1+N | +/- 1 | Direct | Pass | | LAN Cable | +/- 0.5 | Clamp | Pass | # Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. Criteria B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | 38 | Ωf | 66 | |----|----|----| | 20 | UΙ | UU | Observation: No any function degraded during the tests. #### **SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY)** #### **SURGE IMMUNITY TEST** **Port** : Power Cord **Basic Standard**: IEC 61000-4-5 **Requirements** : +/- 1kV (Line to Line of Power Port) +/- 2kV (Line to Eatrth of Power Port) **Performance Criteria** : B (Standard require) **Tester** : Stanley Cheng **Temperature** : 25° C **Humidity** : 62% #### **Block Diagram of Test Setup:** #### **Test Procedure:** 1. The EUT and support units were located on a wooden table 0.8 m away from ground floor. - 2. A test program was loaded and executed in Windows mode. - 3. The data was display on the monitor and filling the screens. - 4. The test program exercised related support units sequentially. - 5. Repeating step 3 to 4 through the test. - 6. Recording the test result as shown in following table. **Test conditions:** Voltage Waveform : 1.2/50 us Current Waveform : 8/20 us Polarity : Positive/Negative Phase angle : 0°, 90°, 270° Number of Test : 5 | Coupling Line | Voltage (kV) | Polarity | Coupling Method | Result (Pass/Fail) | |-----------------------|--------------|----------|------------------------|--------------------| | L1-L2 \ L1-PE \ L2-PE | 1 | Positive | Capacitive | Pass | | L1-L2 \ L1-PE \ L2-PE | 1 | Negative | Capacitive | Pass | | L1-PE、L2-PE | 2 | Positive | Capacitive | Pass | | L1-PE、L2-PE | 2 | Negative | Capacitive | Pass | # # SECTION 7 IEC 61000-4-6 (CONDUCTED DISTRBANCE/INDUCED BY RADIO-FREQUENCY FIELD) **Port** : AC Port and Line Cable **Base Standard**: IEC 61000-4-6 **Requirements** : 3 V with 80% AM. Modulation **Injection Method** : CDN for Power Cord Bulk Current Injection Probe for Line Cable **Deviation** :None Performance Criteria : A (Standard require) **Tester** : Stanley Cheng **Temperature** : 25° C **Humidity** : 62% **Note** : The EUT not have acoustic interfaces, the annex A of EN 55024 should not be applied. #### **Block Diagram of Test Setup:** #### Side view: #### Top view: 10 cm isolation supporter #### **Test Procedure:** - 1. The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly. - 2. Transmit data messages were displayed on screen of Monitor. - 3. Adjusting the monitoring camera to monitor the transmit data message as clear as possible. - 4. Setting the testing parameters of CS test software per EN 61000-4-6. - 5. Recording the test result in following table. #### **Test conditions:** Frequency Range : 0.15MHz-80MHz Frequency Step : 1% of fundamental Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Result (Pass/Fail) | |-------------|-------|------------|--------------------| | 0.15-80 | 3V | Yes | Pass | # **Performance & Result:** | Observat | ion: No any function degraded during the tests. | |---------------|---| | | V PASS FAILED | | Criteria C: | Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls. | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test degradation of performance is however allowed. | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | # SECTION 8 IEC 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST) #### POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST **Port** : Enclosure **Basic Standard**: IEC 61000-4-8 **Requirements** : 1 A/m **Performance Criteria** : A (Standard Required) Tester : N/A Temperature : N/A Humidity : N/A #### **Block Diagram of Test Setup:** #### **Test Procedure:** 1. The EUT and support units were located on Ground Reference Plane with the interposition of a 0.1 m thickness insulation support. - 2. Putting the induction coil on horizontal direction.(X direction) - 3. A test program was loaded and executed in Windows mode. - 4. The data was displayed on the screen of Monitor and filling the screen. - 5. The test program exercised related support units sequentially. - 6. Repeating step 3 to 5 through the test. - 7. Recording the test result as shown in following table. - 8. Rotating the induction coil by 90° (Y direction) then repeat step 3 to 7. - 9. Rotating the induction coil by 90° again (Z direction) then repeat step 3 to 7. #### *. Test conditions: Field Strength: 1A/m Power Freq.: 50Hz Orientation: X, Y, Z | Orientation | Field | Result (Pass/Fail) | Remark | |-------------|-------|--------------------|--------| | X | | | | | Y | | | | | Z | | | | # **Performance & Result:** | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance loss of function is allowed below a performance level specified by the manufactus when the apparatus is used as intended. In some cases the performance level may replaced by a permissible loss of performance. | ırer, | |---------------|---|-------------| | Criteria B: | The apparatus continues to operate as intended after the test. No degradation performance or loss of function is allowed below a performance level specified by manufacturer, when the apparatus is used as intended. In some cases the performal level may be replaced by a permissible loss of performance. During the tegradation of performance is however allowed. | the
ance | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or be restored by the operation of controls. | can | | | PASS FAILED | | | Observat | tion: N/A(EUT Without any magnetic component) | | # SECTION 9 IEC 61000-4-11 (VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS) #### **VOLTAGE DIPS / SHORT INTERRUPTIONS** **Port** : AC mains **Basic Standard** : IEC 61000-4-11 (1994) **Requirement**: Phase angles 0, 45, 90, 135, 180, 225, 270, 315 degrees. | | Test Level | Reduction | Duration | Performance | |---------|-----------------------|-----------|-------------|-------------| | Voltage | $\%$ $\mathrm{U_{T}}$ | (%) | (periods) | Criteria | | Dips | <5 | >95 | 0.5 | В | | | 70 | 30 | 25 | С | | Valtage | Test Level | Reduction | Duration | Performance |
---------------|-------------------|-----------|-------------|-------------| | Voltage | $\%~\mathrm{U_T}$ | (%) | (periods) | Criteria | | Interceptions | <5 | >95 | 250 | С | **Test Interval** : Min. 10 sec. **Tester** : Stanley Cheng **Temperature** : 26°C **Humidity** : 61% #### **Block Diagram of Test Setup:** 47 of 66 #### **Test Procedure:** - 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor. - 2. A test program was loaded and executed in Windows mode. - 3. The data was displayed on the monitor and filling the screens. - 4. The test program exercised related support units sequentially. - 5. Setting the parameter of tests and then Perform the test software of test simulator. - 6. Conditions changes to occur at 0 degree crossover point of the voltage waveform. - 7. Repeating step 3 to 4 through the test. - 8. Recording the test result in test record form. #### **Test conditions:** The duration with a sequence of three dips/interruptions with interval of 10s minimum (between each test events) #### **Voltage Dips:** | Test Level | Reduction | Duration | Observation | Meet Performance | |------------------|-----------|------------|-------------|------------------| | % U _T | (%) | (periods) | | Criteria | | 0 | 100 | 0.5 | Normal | A | | 70 | 30 | 25 | Normal | A | **Voltage Interruptions:** | Test Level % U _T | Reduction (%) | Duration (periods) | Observation | Meet Performance
Criteria | |-----------------------------|---------------|--------------------|--|------------------------------| | 0 | 100 | | Host PC shut down, But
EUT can be auto
recovered after Host PC
restart. | В | Normal: No any functions degrade during and after the test. #### **Performance & Result:** - **Criteria A:** The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. - **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. - **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. |--| 48 of 66 #### **APPENDIX 1** # PHOTOGRAPHS OF TEST SETUP # **LINE CONDUCTED EMISSION TEST (EN 55022)** #### **COMMON MODE CONDUCTED EMISSION TEST** # **RADIATED EMISSION TEST (EN 55022)** # POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST (EN 61000-3-2, EN 61000-3-3) # **ELECTROSTATIC DISCHARGE TEST (IEC 61000-4-2)** # RADIATED ELECTROMAGNETIC FIELD (IEC 61000-4-3) #### **Front View** **Back View** 55 of 66 # **Right View** **Left View** # FAST TRANSIENTS/BURST TEST & SURGE IMMUNITY TEST (IEC 61000-4-4/5 For Power) # FAST TRANSIENTS/BURST TEST(IEC 61000-4-4 For I/O) # CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (IEC 61000 4 6 For Power) # **VOLTAGE DIPS / INTERRUPTION TEST (IEC 61000-4-11)** #### **APPENDIX 2** #### PHOTOGRAPHS OF EUT #### **APPENDIX 3** # CONDUCTED EMISSION PLOT RADIATED EMISSION DATA No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 80 File#: 9672e.EMI Date: 2001-08-10 Time: 07:25:47 #### (CES Conducted) Trace: 58 59 Ref Trace: Condition: LINE Report No. : 01E9672 Test Engr. : JAMES LIAO Company : AAEON TECHNOLOGY INC. EUT : PCM-6898(N) Test Config : EUT/ALL PERIPHERALS Type of Test: EN55022 CLASS B Type of Test: EN55022 CLASS Mode of Op. : Normal Mode Page: 1 | MHz | | | | Line | штиптс | Remark | |--|--|----------------------|--|----------------------------------|--|------------------------------| | MUZ | dBuV | dB | dBuV | dBuV | dB | | | 2 0.400 3
3 0.598 4
4 0.771 3
5 1.210 3 | 43.99
39.96
40.04
37.90
36.66
42.37 | 0.05
0.06
0.07 | 44.01
40.01
40.10
37.97
36.75
42.67 | 57.86
56.00
56.00
56.00 | -18.91
-17.85
-15.90
-18.03
-19.25
-17.33 | Peak
Peak
Peak
Peak | No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 81 File#: 9672e.EMI Date: 2001-08-10 Time: 07:32:32 #### (CES Conducted) Trace: 66 67 Ref Trace: Condition: NEUTRAL Report No. : 01E9672 Test Engr. : JAMES LIAO Company : AAEON TECHNOLOGY INC. EUT : PCM-6898(N) Test Config : EUT/ALL PERIPHERALS Type of Test: EN55022 CLASS B Mode of Op. : Normal Mode Page: 1 | | _ | Read | | | Limit | Over | | |---|-------|-------|--------|-------|-------|--------|--------| | | Freq | Level | Factor | Level | Line | Limit | Remark | | | MHz | dBuV | dB | dBuV | dBuV | dB | | | 1 | 0.404 | 41.79 | 0.05 | 41.84 | 57.77 | -15.93 | Peak | | 2 | 0.627 | 40.39 | 0.06 | 40.45 | 56.00 | -15.55 | Peak | | 3 | 0.918 | 39.58 | 0.08 | 39.66 | 56.00 | -16.34 | Peak | | 4 | 0.994 | 39.67 | 0.08 | 39.75 | 56.00 | -16.25 | Peak | | 5 | 1.071 | 39.95 | 0.08 | 40.03 | 56.00 | -15.97 | Peak | | 6 | 7.137 | 44.56 | 0.31 | 44.87 | 60.00 | -15.13 | Peak | No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 43 File#: 9672e.EMI Date: 2001-08-07 Time: 11:04:51 #### (CES Conducted) Trace: 37 38 Ref Trace: 1 Condition: Common Mode Report No. : 01E9672 Test Engr. : JAMES LIAO Company : AAEON TECHNOLOGY INC. EUT : PCM-6898(N) Test Config : EUT/ALL PERIPHERALS Type of Test: EN55022 CLASS B W/ LIMIT+10dB(6-30MHz) Mode of Op. : Lan Port(RJ45)/10M(Worst) : Red Trace(Peak), Blue Trace(Average) | | Page: | |--|-------| | | 1490 | | | Freq | Read
Level | Factor | Level | Limit
Line | Over
Limit | Remark | |---|--------|---------------|--------|-------|---------------|---------------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | | | 1 | 0.150 | 51.47 | 9.52 | 60.99 | 84.00 | -23.01 | Peak | | 2 | 0.299 | 39.79 | 9.52 | 49.31 | 78.28 | -28.97 | Peak | | 3 | 0.393 | 45.77 | 9.55 | 55.32 | 75.99 | -20.67 | Peak | | 4 | 0.595 | 49.99 | 9.56 | 59.55 | 74.00 | -14.45 | Peak | | 5 | 0.788 | 43.31 | 9.57 | 52.88 | 74.00 | -21.12 | Peak | | 6 | 9.966 | 38.75 | 9.84 | 48.59 | 74.00 | -25.41 | Average | | 7 | 10.000 | 66.98 | 9.84 | 76.82 | 84.00 | -7.18 | QP | No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Date: 2001-08-06 Time: 10:10:49 Data#: 9 File#: 9462d.EMI CCS D-Site Condition: VERTICAL Report No. : 01E9672 Test Engr. : JAMES LIAO Company : AAEON TECHNOLOGY INC. EUT : PCM-6898(N) Test Config : EUT/ALL PERIPHERALS Type of Test: EN 55022 CLASS B Mode of Op. : NORMAL MODE | Page: I | Page | : | 1 | |---------|------|---|---| |---------|------|---|---| | | Freq | Read
Level | Factor | Level | Limit
Line | Over
Limit | Remark | |----|---------|---------------|--------|----------------------------|----------------------------|---------------|--------| | | MHz | dBuV | dB | $\overline{\text{dBuV/m}}$ | $\overline{\text{dBuV/m}}$ | dB | | | 1 | 133.256 | 29.78 | -8.27 | 21.51 | 30.00 | -8.49 | Peak | | 2 | 184.283 | 31.25 | -8.93 | 22.32 | 30.00 | -7.68 | Peak | | 3 | 199.994 | 35.72 | -10.01 | 25.72 | 30.00 | -4.29 | Peak | | 4 | 366.428 | 29.83 | -3.64 | 26.19 | 37.00 | -10.81 | Peak | | 5 | 399.978 | 31.50 | -2.86 | 28.64 | 37.00 | -8.36 | Peak | | 6 | 497.422 | 31.20 | -1.03 | 30.17 | 37.00 | -6.83 | Peak | | 7 | 533.445 | 32.47 | -0.36 | 32.11 | 37.00 | -4.89 | Peak | | 8 | 663.117 | 29.12 | 2.26 | 31.38 | 37.00 | -5.62 | Peak | | 9 | 797.006 | 27.41 | 5.04 | 32.45 | 37.00 | -4.55 | Peak | | 10 | 930.161 | 24.04 | 7.38 | 31.42 | 37.00 | -5.58 | Peak | No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 10 File#: 9462d.EMI Date: 2001-08-06 Time: 10:25:45 CCS D-Site Condition: HORIZONTAL Report No. : 01E9672 Test Engr. : JAMES LIAO Company : AAEON TECHNOLOGY INC. EUT : PCM-6898(N) Test Config : EUT/ALL PERIPHERALS Type of Test: EN 55022 CLASS B Mode of Op. : NORMAL MODE | Page: I | Pag | e: | 1 | |---------|-----|----|---| |---------|-----|----|---| | | Freq | Read
Level | Factor | Level | Limit
Line | Over
Limit | Remark | |----|---------|---------------|--------|----------------------------|----------------------------|---------------|--------| | | MHz | dBuV | dB | $\overline{\text{dBuV/m}}$ | $\overline{\text{dBuV/m}}$ | dB | | | 1 | 133.250 | 29.50 | -8.27 | 21.23 | 30.00 | -8.77 | Peak | | 2 | 184.317 | 30.84 | -8.93 | 21.91 | 30.00 | -8.09 | Peak | | 3 | 199.828 | 35.21 | -10.01 | 25.21 | 30.00 | -4.80 | Peak | | 4 | 366.200 | 24.55 | -3.64 | 20.91 | 37.00 | -16.09 | Peak | | 5 | 399.967 | 31.73 | -2.86 | 28.87 | 37.00 | -8.13 | Peak | | 6 | 499.972 | 32.39 | -1.01 | 31.38 | 37.00 | -5.62 | Peak | | 7 | 533.261 | 27.52 | -0.38 | 27.14 | 37.00 | -9.86 | Peak | | 8 | 663.561 | 29.52 | 2.27 | 31.79 | 37.00 | -5.21 | Peak | | 9 | 797.189 | 26.55 | 5.04 | 31.59 | 37.00 | -5.41 | Peak | | 10 | 930.356 | 26.60 | 7.38 | 33.98 | 37.00 | -3.02 | Peak |