CE EMC

Date of Issue: October 31, 2005

TEST REPORT

For

Medical Station

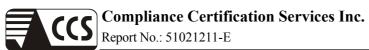
Model: ONYX-193

Trade Name: AAEON

Issued to

AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by



Compliance Certification Services Inc. Hsintien Lab.

No. 165, Chunghsen Road, Hsintien City Taipei Hsien, Taiwan

> TEL: (02) 2217-0894 FAX: (02) 2217-1029

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	3
2	EUT DESCRIPTION	4
3	TEST METHODOLOGY	5
	3.1 EUT SYSTEM OPERATION	5
	3.2 DECISION OF FINAL TEST MODE	5
4	SETUP OF EQUIPMENT UNDER TEST	6
5	FACILITIES AND ACCREDITATIONS	7
	5.1 FACILITIES	7
	5.2 LABORATORY ACCREDITATIONS AND LISTINGS	7
6	INSTRUMENT AND CALIBRATION	8
	6.1 MEASURING INSTRUMENT CALIBRATION	8
	6.2 TEST AND MEASUREMENT EQUIPMENT	
7	LINE CONDUCTED & RADIATED EMISSION TEST	11
	7.1 LIMIT	11
	7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION	
	7.3 TEST PROCEDURE OF RADIATED EMISSION	
	7.4 TEST RESULTS	
8	POWER HARMONICS TEST	18
9	POWER VOLTAGE FLUCTUATION / FLICKER TEST	20
10	ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST	22
11	RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	27
12	FAST TRANSIENTS/BURST IMMUNITY TEST	29
13	SURGE IMMUNITY TEST	31
14	CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD	
	IMMUNITY TEST	33
15	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	35
16	VOLTAGE DIPS / SHORT INTERRUPTIONS	37
ΑP	PPENDIX I - PHOTOGRAPHS OF TEST SETUP	40
ΑP	PPENDIX II – TEST RESULT OF EN 61000-3-2/-3	47
ΑP	PPENDIX III -TEST RESULT OF FINAL DATAS	51

1 TEST RESULT CERTIFICATION

Applicant: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Date of Issue: October 31, 2005

Taipei, Taiwan, R.O.C.

Manufacturer: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R.O.C.

Equipment Under Test: Medical Station

Trade Name: AAEON

Model: ONYX-193

Detailed EUT Description: See Item 2 of this report

Date of Test: October 21, 2005 ~ October 25, 2005

Applicable Standard	Class/Limit/Criterion	Test Result			
EN 60601-1-2: 2001, including					
EN 55011: 1998 + A1: 1999 + A2: 2002	Group I, Class B	No non-compliance noted			
IEC 61000-4-2: 1995 +A1: 1998 +A2: 2000	See Item 9 of this report	No non-compliance noted			
IEC 61000-4-3: 2002 +A1: 2002	See Item 10 of this report	No non-compliance noted			
IEC 61000-4-4: 1995 +A1: 2000 +A2: 2001	See Item 11 of this report	No non-compliance noted			
IEC 61000-4-5: 1995 + A1: 2000	See Item 12 of this report	No non-compliance noted			
IEC 61000-4-6: 1996 + A1: 2000	See Item 13 of this report	No non-compliance noted			
IEC 61000-4-8: 1993 + A1: 2000	See Item 14 of this report	No non-compliance noted			
IEC 61000-4-11: 1994 + A1: 2000	See Item 15 of this report	No non-compliance noted			
EN 61000-3-2: 2000	Class D	No non-compliance noted			
EN 61000-3-3: 1995 + A1: 2001 Limit No non-compliance not					
Deviation from Applicable Standard					
None					

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in the EMC Directive 93/42/EEC and the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Reviewed by:

David Wang

Manager of Hsintien Laboratory

Compliance Certification Services Inc.

Vince Chiang

Assistant Manager of Hsintien Laboratory Compliance Certification Services Inc.

Page 3 Rev. 00

2 EUT DESCRIPTION

Product	Medical Station	
Trade Name	AAEON	
Model	ONYX-193	
Housing Type	Plastic w/ metal plate	
EUT Power Rating	100~240VAC	
AC Power During Test	230VAC / 50Hz	
Power Supply Manufacturer	FSP	
Power Supply Model Number	FSP180-50MP	
AC Power Cord Type	Unshielded, 1.8m (Detachable)	
OSC/Clock Frequencies	32.768kHz; 14.31818MHz; 25MHz	

Date of Issue: October 31, 2005

I/O PORT OF EUT

I/O PORT TYPE	Q'TY	TESTED WITH
1). PIO Port	1	1
2). SIO Port	3	3
3). PS/2 Keyboard Port	1	1
4). PS/2 Mouse Port	1	1
5). VIDEO-OUT Port (VGA)	1	1
6). AUDIO IN Port	1	1
7). Microphone Port	1	1
8). EARPHONE Port	1	1
9). LAN Port	1	1
10). USB Port	5	5
11). S-VIDEO OUT Port	1	1
12). CF Slot	1	1
13). MS Slot	1	1
14). SM Slot	1	1
15). SD Slot	1	1

Note: Client consigns only one model sample (Model Number is ONYX-193) to test.

Page 4 Rev. 00

3 TEST METHODOLOGY

3.1 EUT system Operation

- 1. Windows 2000 boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.

Date of Issue: October 31, 2005

- 3. Run Winemc.exe and choose media player to play music.
- 4. Run Winemc.exe and choose "F:/ & G:/ & H:/ & I:/ & J:/" to test USB 2.0 port.
- 5. Press the start menu, select executive and type ping 192.168.0.2 –t (EUT), ping 192.168.0.1 –t (Server Notebook).

Note: Test program is self-repeating throughout the test.

3.2 DECISION OF FINAL TEST MODE

1. The following test mode(s) were scanned during the preliminary test:

Mode(s):

1.	LCD+Panel (1280X1024, VF=75Hz)
2.	Panel+S-video(800X600, VF=75Hz)
3.	Panel+S-video(640X480, VF=60Hz)

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Conduction: Mode 1

Radiation: Mode 1

Then, the EUT configuration and cable configuration of the above highest emission mode was chosen for all final test items.

Page 5 Rev. 00

4 SETUP OF EQUIPMENT UNDER TEST

Setup Diagram

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

Support Equipment

EUT Devices:

No	Equipment	Model #	Trade Name
1	CPU (1.6GHz)	Pentium M 1.60GHz	Intel (R)
2	Memory (DDR333/ 512MB)	HY5DU56822DT-J	Hynix
3	Hard Disk (40GB)	MHT2040AT	FUJITSU
4	Power Supply	FSP180-50MP	FSP
5	DVD ROM	DV-28SL	TEAC

Date of Issue: October 31, 2005

Peripherals Devices:

No	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade Name	Data Cable	Power Cord
1	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
2	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
3	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
4	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
5	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
6	PS/2 Mouse	M071KC	443029438	BSMI: R41108 DoC	DELL	Shielded, 1.8m	N/A
7	PS/2 Keyboard	SK-8110	N/A	BSMI: T3A002 DoC	DELL	Shielded, 1.8m	N/A
8	Player	RQ-L317	N/A	N/A	PANASONIC	Unshielded, 1.6m	N/A
9	Ear / Mic	MSB301	N/A	N/A	e-Sense	Unshielded, 1.8m	N/A
10	Printer	C60	N/A	BSMI ID: 3902E006	EPSON	Shielded, 1.8 m	Unshielded, 1.8m
11	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 0.9m	Unshielded, 1.8m
12	Monitor (TV)	GH17WS	N/A	BSMI: R33475	SAMAUNG	Shielded, 1.8m	Unshielded, 1.8m
13	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 0.9m	Unshielded, 1.8m
14	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 0.9m	Unshielded, 1.8m
15	Monitor	710V	GS17H9NXA05853A	BSMI: R33475 DoC	SAMSUNG	Shielded, 1.8m with two cores	Unshielded, 1.8m
16	Server Notebook	2659-FT1	AK-VHXOH 02/10 C	ANOPSIWLIV	IBM	Unshielded, 20m	Unshielded, 1.8m
17	SD Card	N/A	N/A	N/A	N/A	N/A	N/A
18	SM Card	N/A	N/A	N/A	N/A	N/A	N/A
19	MS Card	N/A	N/A	N/A	N/A	N/A	N/A
20	CF Card	N/A	N/A	N/A	N/A	N/A	N/A

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test. Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

Page 6 Rev. 00

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities (except above 1GHz measurement frequency of IEC 61000-4-3) used to collect the measurement data are located at

Date of Issue: October 31, 2005

CCS Taiwan Hsintien Lab at No. 165, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan.

The measurement facilities of IEC 61000-4-3 frequency rang above 1GHz are located at CCS Taiwan Wuku Lab. at No. 11, Wu-Kung 6 Rd., Wu-Ku Hsiang, Wu-Ku Industrial District, Taipei Hsien, Taiwan

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform Electromagnetic compatibility tests are registered or accredited by the organizations listed in the following table which includes the recognized scope specifically.

Country	Agency	Scope of Accreditation	Logo
USA	USA CFR 47, FCC Part 15/18 using ANSI 63.4; AS/NZS 3548; V0 V3; CNS 13438; CNS 13439; CNS 13783; CNS 14115; CISI 11/EN 55011; CISPR 14-1/EN 55014-1; CISPR 15/EN 55011; CISPR 22/EN 55022; EN 50081-1/EN 61000-6-3; EN 50082-1/EN 61000-6-4; IEC/EN 61000-4-2, IEC/EN 61000-4-6, IEC/EN 61000-4-4, IEC/EN 61000-4-5, IEC/EN 61000-4-6, IEC/EN 61000-4-8, IEC/EN 61000-4-11, IEC/EN 61000-3-2 IEC/EN 61000-3-3; CISPR 24/EN 55024; CISPR 14-2/EN 55014-2; EN 50081-2/EN 61000-6-1; EN 50082-2/EN 61000-6-2.		ACCREDITED 824.01
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 250366
Japan	VCCI	3/10 meter Open Area Test Sites and Line Conducted Test Room to perform conducted/radiated measurements	VCCI R-1434/1630~4 C-1511/1882
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, Cispr 16-1/2/3/4	ELA 103
Taiwan	CNLA	47 CFR FCC Part 15 Subpart B, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 13438, AS/NZS 3548, VCCI, CNS 13022-1/2/3, EN 55022, EN 55013, EN 55014-1, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, ENV 50141, ENV 50142	1108 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439	SL2-IN-E-0005 SL2-A1-E-0005 SL2-R1-E-0005 SL2-R2-E-0005
Canada	Industry Canada	RSS212, Issue 1	Canada IC 5742

Note: No part of this report may be used to claim or imply product endorsement by CNLA, A2LA or other government agency.

Page 7 Rev. 00

6 INSTRUMENT AND CALIBRATION

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Date of Issue: October 31, 2005

6.2 TEST AND MEASUREMENT EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and other required standards. Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective manual.

Equipment Used for Emission Measurement

Open Area Test Site # I					
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE	
SITE NSA	CCS	I Site	N/A	10/14/2006	
MEASURE RECEIVER	SCHAFFNER	SCR3501	338	06/27/2006	
SPECTRUM ANALYZER	ADVANTEST	R3132	120900008	No Calibration Required	
ANTENNA	SCHAFFNER	CBL 6112B	2809	09/23/2006	
AMPLIFIER	SCHAFFNER	CPA9231A	3626	10/08/2006	
CABLE	BELDEN	9913	N-TYPE #I2	02/18/2006	
ATTENUATOR	MCL	UNAT-6	AT06-3	10/08/2006	
THERMO- HYGRO METER	TFA	N/A	NO.2	11/09/2005	

Note: The measurement uncertainty is less than +/- 3.36dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Conducted Emission Test Site # B					
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE	
TEST RECEIVER	R&S	ESHS10	843743/015	03/31/2006	
LISN (EUT)	EMCO	3825/2	9106-1810	01/16/2006	
LISN	EMCO	3825/2	1382	01/16/2006	
BNC CABLE	MIYAZAKI	5D-FB	BNC B1	07/14/2006	
Pulse Limiter	R&S	ESH3-Z2	100374	08/25/2006	
THERMO- HYGRO METER	ТОР	HA-202	9303-3	03/02/2006	

Note: The measurement uncertainty is less than +/- 2.83dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Power Harmonic & Voltage Fluctuation/Flicker Test Site (EN 61000-3-2&-3-3)				
Manufacturer/Type Model No. Serial No. Cal. Due				
Schaffner / Signal Conditioning Unit	CCN 1000-1	72122	12/05/2005	
Schaffner / 5KVA AC Power Source	NSG 1007	55131	No Calibration Required	

Date of Issue: October 31, 2005

Equipment Used for Immunity Measurement

ESD Test Site (EN 61000-4-2)					
Manufacturer/Type	Model No.	Serial No.	Cal. Due		
Schaffner / ESD Simulator	NSG 438	129	04/20/2006		
Sato / Aneroid Barometer	7610-20	89090	08/29/2006		
TOP / Thermo-Hygro meter	HA-202	9303-1	03/02/2006		

Radiated Electro	Radiated Electromagnetic Field Immunity Test Site (EN 61000-4-3)							
Manufacturer/Type	Model No.	Serial No.	Cal. Due					
Calibration of Field	Chamber#RS	RS3H-7 / RS3V-7	07/01/2006					
Agilent / Signal Generator	E4421B	MY43350597	05/16/2006					
AR / Electric Field Probe	FP6001	305650	02/03/2006					
Boonton / RF Voltmeter	9200B	328001AE	02/23/2006					
BNC / Function Generator	625A	25451	02/17/2006					
AR / Amplifier	100W1000M1	17564	No Calibration Required					
Werlatone Inc. / Direction Coupler	ction C2630 4121		No Calibration Required					
Frankonia / Broadband Antenna	BTA-M	030001M	No Calibration Required					
TOP / Thermo-Hygro meter	HA-202	9303-2	03/02/2006					

Fast Transients/Burst Test Site (EN 61000-4-4)							
Manufacturer/Type	Model No.	Serial No.	Cal. Due				
Schaffner / EFT Generator	BEST EMC V2.3	200031A024SC	11/09/2005				
Schaffner / Capacitive Clamp	N/A	N/A	No Calibration Required				

Page 9 Rev. 00

Surge Immunity Test Site (EN 61000-4-5)							
Manufacturer/Type Model No. Serial No. Cal. Due							
Schaffner / Surger Generator	BEST EMC V2.3	200031A024SC	11/09/2005				
Schaffner / Signal and Data Lines Coupling Network	CDN118	19328	No Calibration Required				

Date of Issue: October 31, 2005

CS test (EN 61000-4-6)							
Manufacturer/Type	Model No.	Serial No.	Cal. Due				
Schaffner / RF Generator	NSG 2070-1	1061	08/03/2006				
Schaffner / CDN	CDN M316	19600	08/02/2006				
Schaffner / CDN	CDN M216	19294	08/02/2006				
FCC / CDN	FCC-801-M3-16A	99122	08/02/2006				
Schaffner / EM Clamp	KEMZ 801	19227	02/23/2006				
Schaffner / CDN	CDN T002	15881	01/13/2006				
FCC / CDN	FCC-801-T8-RJ45	04025	06/23/2006				
Schaffner / Attenuator	INA2070-1	2061	No Calibration Required				
FCC / CDN	FCC-801-T4-RJ45	04031	08/02/2006				

Power Frequency Magnetic Field Immunity test (EN 61000-4-8)						
Manufacturer/Type	Model No.	Serial No.	Cal. Due			
Schaffner / Induction Coil Interface	INA 21141	6009	No Calibration Required			
Schaffner / 5KVA AC Power Source	NSG 1007	55131	No Calibration Required			
Sypris / Magnetic Field Meter	4080	0247	01/19/2006			

Voltage Dips/Short Interruption and Voltage Variation Immunity test (EN 61000-4-11)								
Manufacturer/Type	Model No. Serial No.		Cal. Due					
Schaffner / Dips/Interruption/Variations Tester	BEST EMC V2.3	200031A024SC	11/09/2005					
Protronix / Digital Power Meter	1201	201091	08/24/2006					

Page 10 Rev. 00

7 LINE CONDUCTED & RADIATED EMISSION TEST

Date of Issue: October 31, 2005

7.1 LIMIT

Maximum permissible level of Line Conducted Emission

Frequency	Class A	(dBµV)	Class B (dBµV)		
(MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 10 meter

Frequency	Class A (dBµV/m)	Class B (dBµV/m)
(MHZ)	Quasi-peak	Quasi-peak
30 – 230	40	30
230 - 1000	47	37

Note: The lower limit shall apply at the transition frequency.

Page 11 Rev. 00

7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION

Procedure of Preliminary Test

• The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Date of Issue: October 31, 2005

- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical actual usage as per EN 55011.
- The test equipment EUT installed received AC power, 230VAC/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.
- The test data of the worst-case condition(s) was recorded.

Page 12 Rev. 00

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	56	-12.50	Q	L1

Date of Issue: October 31, 2005

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading Factor = Insertion loss of LISN + Cable Loss

Level = Read Level + Factor
Limit = Limit stated in standard
Over Limit = Reading in reference to limit

P = Peak Reading

Q = Quasi-peak Reading A = Average Reading

L1 = Hot side L2 = Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) – Limit (dBuV)

Page 13 Rev. 00

7.3 TEST PROCEDURE OF RADIATED EMISSION

Procedure of Preliminary Test

• The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Date of Issue: October 31, 2005

- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical usage as per EN 55011.
- The EUT received AC power source, 230VAC/50Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

Page 14 Rev. 00

Report No.: 51021211-E Date of Issue: October 31, 2005

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Over Limit dB	Reading Type (P/Q/A)	Pol. (H/V)
X.XX	14.0	12.2	26.2	30	-3.8	Q	Н

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading

Factor = Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain

Level = Read Level + Factor
Limit = Limit stated in standard
Over Limit = Reading in reference to limit

P = Peak Reading

Q = Quasi-peak Reading A = Average Reading

H = Antenna Polarization: Horizontal V = Antenna Polarization: Vertical

Calculation Formula

Over Limit (dB) = Level (dBuV/m) – Limit (dBuV/m)

Page 15 Rev. 00

7.4 TEST RESULTS

Line Conducted Emission

Model: ONYX-193 Test Mode: Mode 1

Temperature: 24°C Humidity: 48% RH

Test Results: Passed **Tested by:** Alex Pan

(The chart below shows the highest readings taken from the final data, see **Appendix III** for details.)

Date of Issue: October 31, 2005

	Six Highest Conducted Emission Readings								
Frequency Range Investigated				150 kHz t	o 30 MHz				
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)		
0.207	41.98	9.97	51.95	63.32	-11.37	P	L1		
1.117	36.14	10.03	46.17	56.00	-9.83	P	L1		
1.117	32.02	10.03	42.05	46.00	-3.95	A	L1		
2.237	33.83	10.14	43.97	56.00	-12.03	P	L1		
3.140	34.20	10.15	44.36	56.00	-11.64	P	L1		
1.117	35.65	10.01	45.66	56.00	-10.34	P	L2		
1.317	34.31	10.02	44.33	56.00	-11.67	P	L2		

NOTE: The emission level was or more than 2dB below the Average limit, so no re-check anymore.

Page 16 Rev. 00

Radiated Emission

Model: ONYX-193 Test Mode: Mode 1

Temperature: 26°C **Humidity:** 56% RH

Test Results: Passed **Tested by:** Peter Jou

(The chart below shows the highest readings taken from the final data, see Appendix III for details.)

Date of Issue: October 31, 2005

Six Highest Radiated Emission Readings								
Frequency Range Investigated			30	MHz to 100	0 MHz at 1	0m		
Freq (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Reading Type (P/Q/A)	Pol. (H/V)	
125.010	34.45	-9.25	25.20	30.00	-4.80	Q	V	
169.000	34.70	-11.04	23.66	30.00	-6.34	Q	V	
217.450	35.30	-10.59	24.71	30.00	-5.29	Q	V	
480.040	35.12	-2.35	32.77	37.00	-4.23	Q	V	
400.040	34.12	-4.11	30.01	37.00	-6.99	Q	Н	
480.050	33.00	-2.35	30.65	37.00	-6.35	Q	Н	

NOTE: None.

Page 17 Rev. 00

8 POWER HARMONICS TEST

Port : AC Power Port

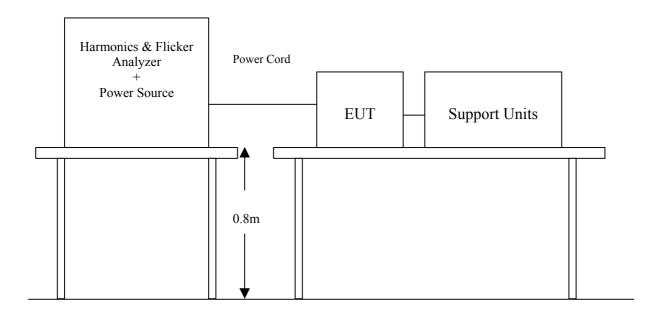
Basic Standard: EN 61000-3-2 (2000)

Limits : \Box CLASS A; \Box CLASS B; \Box CLASS C; \boxtimes CLASS D

Tested by : Kevin Chang

Temperature : 20°C **Humidity** : 45%

Limit:


Limits for Class A equipment			
Harmonics	Max. permissible		
Order	harmonics current		
n	A		
Od	ld harmonics		
3	2.30		
5	1.14		
7	0.77		
9	0.40		
11	0.33		
13	0.21		
15<=n<=39 0.15x15/n			
Eve	en harmonics		
2	1.08		
4	0.43		
6	0.30		
8<=n<=40	0.23x8/n		

Limits for Class D equipment				
Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current		
	Odd Harmonics only	/		
3	3.4	2.30		
5	1.9	1.14		
7	1.0	0.77		
9	0.5	0.40		
11	0.35	0.33		
13	0.30	0.21		
15<=n<=39	3.85/n	0.15x15/n		

Date of Issue: October 31, 2005

Page 18 Rev. 00

Date of Issue: October 31, 2005

Block Diagram of Test Setup:

Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

<u>Test Result</u>: (See Appendix II for details)

	PASS	☐ FAIL	
Note: None.			

Page 19 Rev. 00

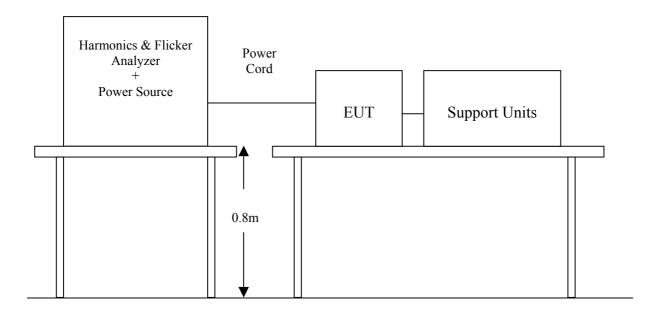
9 POWER VOLTAGE FLUCTUATION / FLICKER TEST

Date of Issue: October 31, 2005

Port : AC Power Port

Basic Standard : EN 61000-3-3 (1995 + A1: 2001)

Limits : §5 of EN 61000-3-3


Tested by : Kevin Chang

Temperature : 20°C **Humidity** : 45%

Limit:

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

Block Diagram of Test Setup:

Page 20 Rev. 00

Test Procedure:

a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

Date of Issue: October 31, 2005

Test Result: (See Appendix II for details)

Test Parameter	Measurement Value	Limit	Result
P_{st}	0.001	1.0	Pass
P _{lt}	0.001	0.65	Pass
T _{dt} (ms)	0.0	500	Pass
d _{max} (%)	0.00	4%	Pass
dc (%)	0.00	3.3%	Pass

Note: None.

Page 21 Rev. 00

10 ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port : Enclosure

Basic Standard: IEC/EN 61000-4-2

Test Level : ± 2 , 4, 8 kV (Air Discharge)

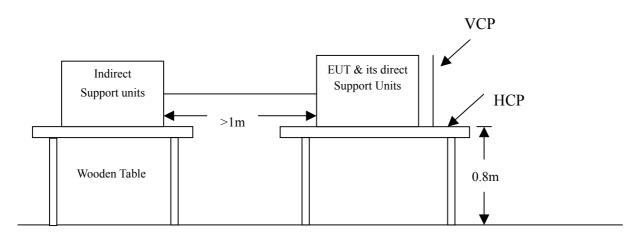
±2, 4, 6 kV (Contact Discharge)

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: October 31, 2005

Tested by : Sam Su


Temperature : 20°C

Humidity : 45% RH

Pressure : 1005mbar

Block Diagram of Test Setup:

(The 470 k Ω resistors are installed per standard requirement.)

Ground Reference Plane

Page 22 Rev. 00

Test Procedure:

The electrostatic discharges were applied as follows:

Amount of Discharges	Voltage	Coupling	Result (Pass/Fail)
\geq 20 / Point	\geq 20 / Point \pm 2, 4, 8 kV Air Discharge		Pass
≥20 / Point	± 2, 4, 6 kV	Contact Discharge	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge HCP	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Front)	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Left)	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Back)	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Right)	Pass

Date of Issue: October 31, 2005

(Blue Arrow Mark For Contact Discharge And Red Arrow Mark For Air Discharge)

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 23 Rev. 00

^{**}For the tested points to EUT, please refer to attached page.

The Tested Points of EUT

Photo <u>1 of 5</u>

Photo 2 of 5

Page 24 Rev. 00

Photo 3 of 5

Photo 4 of 5

Photo <u>5 of 5</u>

Page 26 Rev. 00

11 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

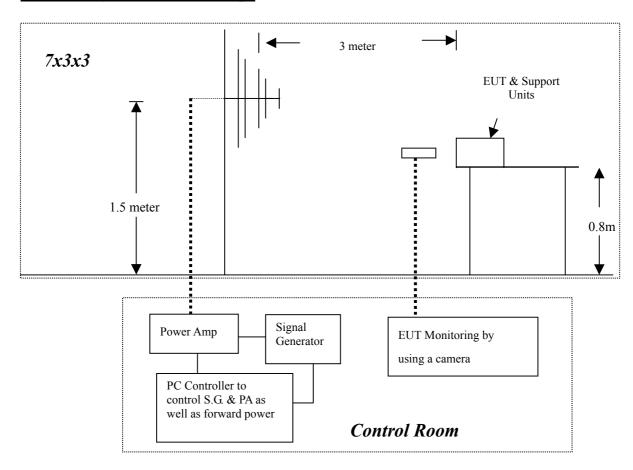
Basic Standard: IEC/EN 61000-4-3

Requirements : 3 V/m with 80% AM, 1kHz Modulation.

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: October 31, 2005


Tested by : Kevin Chang

Temperature : 20°C

Humidity : 45% RH

Pressure : 1005mbar

Block Diagram of Test Setup:

Page 27 Rev. 00

Test Procedure:

Frequency Range $80 \text{MHz} \sim 2500 \text{MHz}$ Steps : 1 % of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Polarity	Position	Result (Pass/Fail)
80-2500	3V/m	Yes	Н	0	Pass
80-2500	3V/m	Yes	V	0	Pass
80-2500	3V/m	Yes	Н	90	Pass
80-2500	3V/m	Yes	V	90	Pass
80-2500	3V/m	Yes	Н	180	Pass
80-2500	3V/m	Yes	V	180	Pass
80-2500	3V/m	Yes	Н	270	Pass
80-2500	3V/m	Yes	V	270	Pass

Date of Issue: October 31, 2005

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 28 Rev. 00

12 FAST TRANSIENTS/BURST IMMUNITY TEST

Port : AC Power Port and RJ45 Port

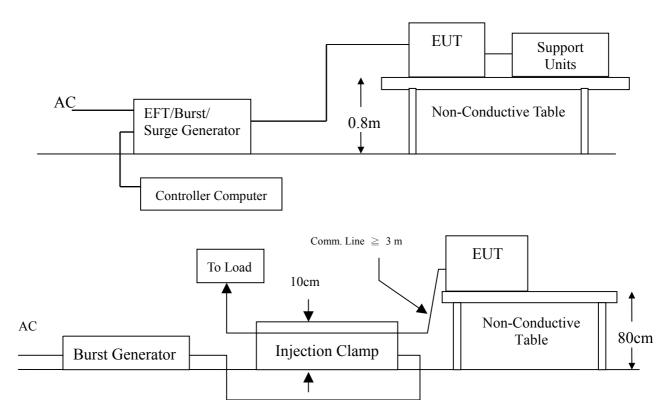
Basic Standard: IEC/EN 61000-4-4

Requirements : $\pm 2 \text{ kV for AC Power Port}$

± 1 kV for RJ45 Port

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.


Date of Issue: October 31, 2005

Tested by : Kevin Chang

Temperature : 20°C Humidity : 45%

Pressure : 1005mbar

Block Diagram of Test Setup:

Page 29 Rev. 00

Test Procedure:

Impulse Frequency: 5kHz
Tr/Th: 5/50ns
Burst Duration: 15ms
Burst Period: 300ms

Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)
L	± 2	Direct	Pass
N	± 2	Direct	Pass
PE	± 2	Direct	Pass
L + N	± 2	Direct	Pass
L + PE	± 2	Direct	Pass
N + PE	± 2	Direct	Pass
L + N + PE	± 2	Direct	Pass
RJ45	± 1	Clamp	Pass

Date of Issue: October 31, 2005

Observation: As \pm 1 kV EFT applying to LAN port, the data transmitting was pause during test. It could become normal after test stop.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 30 Rev. 00

13 SURGE IMMUNITY TEST

Port : AC Power Port

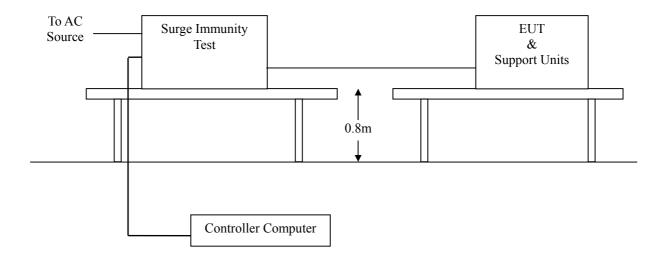
Basic Standard: IEC/EN 61000-4-5

Requirements : $\pm 0.5 \text{ kV} \cdot \pm 1 \text{ kV}$ (Line to Line) for AC Power Port

 \pm 0.5 kV \cdot \pm 1 kV \cdot \pm 2 kV (Line to Ground) for AC Power Port

Date of Issue: October 31, 2005

Performance Criteria: The Equipment or System shall be able to provide the essential


performance and remain safe.

Tested by : Kevin Chang

Temperature : 20°C Humidity : 45%

Pressure : 1005mbar

Block Diagram of Test Setup:

Page 31 Rev. 00

Test Procedure:

Voltage Waveform : $1.2/50 \mu s$ Current Waveform : $8/20 \mu s$

Polarity : Positive/Negative Phase angle : 0°, 90°, 180°, 270°, 359°

Number of Test : 5

Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2	±0.5 \ ±1	Positive	Capacitive	Pass
L1-PE	$\pm 0.5 \cdot \pm 1 \cdot \pm 2$	Positive	Capacitive	Pass
L2-PE	$\pm 0.5 \cdot \pm 1 \cdot \pm 2$	Positive	Capacitive	Pass
L1-L2	±0.5 \ ±1	Negative	Capacitive	Pass
L1-PE	$\pm 0.5 \cdot \pm 1 \cdot \pm 2$	Negative	Capacitive	Pass
L2-PE	±0.5 \ ±1 \ ±2	Negative	Capacitive	Pass

Date of Issue: October 31, 2005

Observation: Where normal functioning of LAN can't be achieved because of the impact of CDN on the EUT, no test be required.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 32 Rev. 00

14 CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST

Port : AC Power Port and RJ45 Port

Basic Standard: IEC/EN 61000-4-6

Requirements : 3 V with 80% AM, 1kHz Modulation.

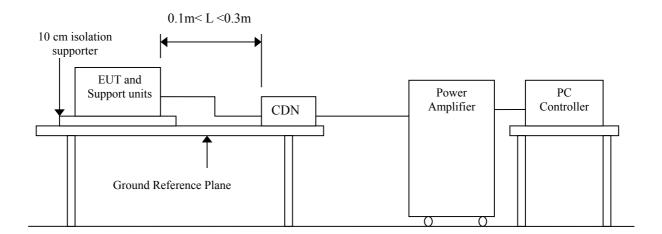
Injection Method : CDN-M3 for AC Power Port

CDN-T4 for RJ45 Port

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: October 31, 2005


Tested by : Kevin Chang

Temperature : 20°C

Humidity: 45%

Pressure : 1005mbar

Block Diagram of Test Setup:

Page 33 Rev. 00

Test Procedure:

Frequency Range : 0.15MHz-80MHz Frequency Step : 1% of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	3V	Yes	Pass

Date of Issue: October 31, 2005

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 34 Rev. 00

15 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

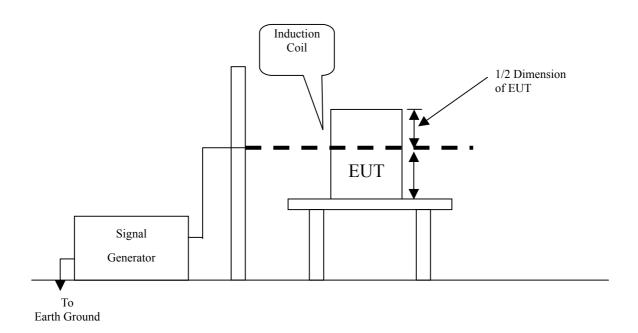
Basic Standard: IEC/EN 61000-4-8

Requirements : 3 A/m, 50/60Hz

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: October 31, 2005


Tested by : Sam Su

Temperature : 20°C

Humidity : 45% RH

Pressure : 1005mbar

Block Diagram of Test Setup:

Page 35 Rev. 00

Test Procedure:

Field Strength: 3A/m Power Freq.: 50Hz, 60Hz Orientation: X, Y, Z

Orientation	Field	Result	Remark
X	3A/m, 50Hz	Pass	No any function degraded during the tests.
Y	3A/m, 50Hz	Pass	No any function degraded during the tests.
Z	3A/m, 50Hz	Pass	No any function degraded during the tests.
X	3A/m, 60Hz	Pass	No any function degraded during the tests.
Y	3A/m, 60Hz	Pass	No any function degraded during the tests.
Z	3A/m, 60Hz	Pass	No any function degraded during the tests.

Date of Issue: October 31, 2005

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 36 Rev. 00

16 VOLTAGE DIPS / SHORT INTERRUPTIONS

Port : AC Power Port

Basic Standard: IEC/EN 61000-4-11

Requirement: PHASE ANGLE 0°, 180°

	Test Level % U _T	Reduction (%)	Duration (periods)
Voltage Dips	<5	>95	0.5
	40	60	5
	70	30	25

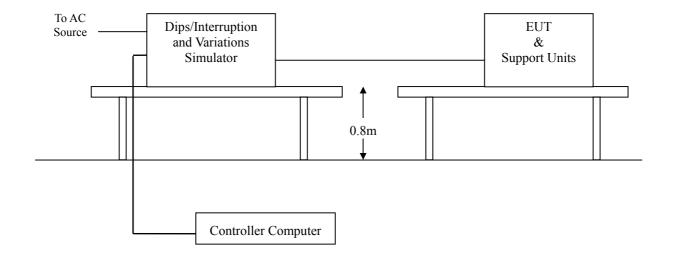
Date of Issue: October 31, 2005

Voltage Interruptions	Test Level % U _T	Reduction (%)	Duration (second)
interruptions	<5	>95	5

Test Interval : Min. 10 sec.

Performance Criteria: The Equipment or System shall be able to provide the

essential performance and remain safe.


Tested by : Sam Su

Temperature : 20°C

Humidity: 45%

Pressure : 1005mbar

Block Diagram of Test Setup:

Page 37 Rev. 00

Test Procedure:

The duration with a sequence of three dips/interruptions with interval of 10 s minimums (Between each test event)

Date of Issue: October 31, 2005

Voltage Dips:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Result
0	100	0.5	Normal	A
40	60	5	Normal	A
70	30	25	Normal	A

Voltage Interruptions:

Test Level % U _T	Reduction (%)	Duration (second)	Observation	Result
0	100	5	EUT shut down, but EUT can be auto recovered after power turn on.	С

Note:

- 1. Normal No any functions degrade during and after the test.
- 2. For Voltage Interruption, EQUIPMENT and SYSTEMS are allowed a deviation from the requirements of 36.202.1) at the IMMUNITY TEST LEVEL specified in Table 211, provided the EQUIPMENT or SYSTEM remains safe, experiences no component failures and is restorable to the pre-test state with OPERATOR intervention. Determination of compliance is based upon performance of the EQUIPMENT or SYSTEM during and after application of the test sequence.

Observation: No function degraded during the tests.

Page 38 Rev. 00

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

Date of Issue: October 31, 2005

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 39 Rev. 00

APPENDIX I - PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST (EN 55011)

Page 40 Rev. 00

Date of Issue: October 31, 2005

RADIATED EMISSION TEST (EN 55011)



Page 41 Rev. 00

POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST

ELECTROSTATIC DISCHARGE TEST

Page 42 Rev. 00

RADIATED ELECTROMAGNETIC FIELD TEST

FAST TRANSIENTS/BURST TEST

Page 43 Rev. 00

FAST TRANSIENTS/BURST TEST (IEC 61000-4-4 FOR I/O)

SURGE IMMUNITY TEST

Page 44 Rev. 00

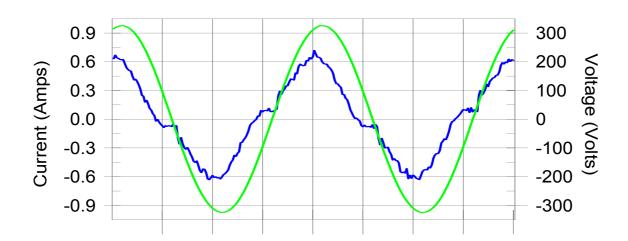
CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (IEC 61000-4-6 FOR I/O)

Page 45 Rev. 00

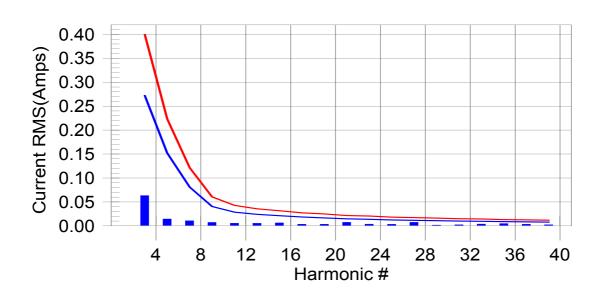
POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

VOLTAGE DIPS / INTERRUPTION TEST



Page 46 Rev. 00

APPENDIX II – TEST RESULT OF EN 61000-3-2/-3


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class D limit line

European Limits

Test result: Pass Worst harmonic was #27 with 42.53 % of the limit.

Page 47 Rev. 00

Date of Issue: October 31, 2005

Test Result: Pass Source qualification: Normal

THC(A): 0.069 I-THD(pk%): 19.022 POHC(A): N/A POHC Limit(A): N/A

Highest parameter values during test:

V_RMS (Volts): 230.08

I_Peak (Amps): 0.718 I_RMS (Amps): 0.398 I_Fund (Amps): 0.401 **Crest Factor:** 1.847 Power (Watts): 86 **Power Factor:** 0.940

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.000						
3	0.063	0.272	23.1	0.063	0.400	15.81	Pass
4	0.000						
5	0.014	0.152	9.3	0.014	0.224	6.44	Pass
6	0.000						
7	0.010	0.081	12.4	0.011	0.121	8.77	Pass
8	0.000						
9	0.007	0.040	16.5	0.007	0.061	11.76	Pass
10	0.000						
11	0.004	0.029	15.0	0.005	0.043	12.69	Pass
12	0.000						_
13	0.004	0.024	18.5	0.005	0.036	14.78	Pass
14	0.000						_
15	0.006	0.021	26.5	0.006	0.031	19.33	Pass
16	0.000	0.040	40.0	0.000	0.007	40.70	D
17	0.003	0.018	16.6	0.003	0.027	12.70	Pass
18	0.000	0.047	40.0	0.000	0.005	44.00	D
19	0.003	0.017	18.2	0.003	0.025	14.00	Pass
20 21	0.000 0.007	0.045	48.0	0.007	0.022	22.72	Door
21	0.007	0.015	40.0	0.007	0.022	33.72	Pass
23	0.000	0.014	20.0	0.004	0.020	18.20	Pass
23 24	0.000	0.014	20.0	0.004	0.020	10.20	Fa55
2 4 25	0.003	0.012	21.2	0.003	0.018	18.42	Pass
26	0.000	0.012	21.2	0.003	0.010	10.42	газэ
27	0.007	0.011	58.7	0.007	0.017	42.53	Pass
28	0.000	0.011	00	0.007	0.011	72.00	. 400
29	0.001	0.011	8.8	0.002	0.016	10.28	Pass
30	0.000						
31	0.002	0.010	19.5	0.002	0.015	15.47	Pass
32	0.000						
33	0.003	0.009	37.2	0.004	0.014	26.93	Pass
34	0.000						
35	0.005	0.009	52.8	0.005	0.013	37.87	Pass
36	0.000						
37	0.003	0.008	36.9	0.003	0.012	27.92	Pass
38	0.000						
39	0.002	0.008	28.5	0.003	0.012	21.29	Pass
40	0.000						

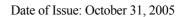
Rev. 00 Page 48

Report No.: 51021211-E Date of Issue: October 31, 2005

Test Result: Pass Source qualification: Normal

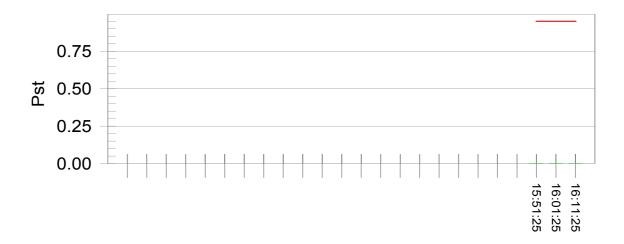
Highest parameter values during test:

Voltage (Vrms): 230.08


 I_Peak (Amps):
 0.718
 I_RMS (Amps):
 0.398

 I_Fund (Amps):
 0.401
 Crest Factor:
 1.847

 Power (Watts):
 86
 Power Factor:
 0.940


Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.125	0.459	27.30	ОК
3	0.387	2.068	18.71	OK
4	0.047	0.460	10.27	OK
5	0.037	0.920	4.00	OK
6	0.093	0.460	20.27	OK
7	0.038	0.690	5.45	OK
8	0.035	0.460	7.50	OK
9	0.050	0.460	10.88	OK
10	0.024	0.459	5.29	OK
11	0.068	0.230	29.47	OK
12	0.023	0.230	9.90	OK
13	0.040	0.230	17.60	OK
14	0.018	0.230	7.79	OK
15	0.024	0.230	10.64	OK
16	0.018	0.230	7.91	OK
17	0.017	0.230	7.28	OK
18	0.045	0.230	19.43	OK
19	0.013	0.230	5.63	OK
20	0.029	0.230	12.78	OK
21	0.020	0.230	8.78	OK
22	0.024	0.230	10.33	OK
23	0.069	0.230	30.15	OK
24	0.026	0.230	11.36	OK
25	0.098	0.230	42.58	OK
26	0.039	0.230	16.93	OK
27	0.045	0.230	19.77	OK
28	0.035	0.230	15.39	OK
29	0.026	0.230	11.35	ОК
30	0.043	0.230	18.66	ОК
31	0.011	0.230	4.97	OK
32	0.016	0.230	6.77	OK
33	0.015	0.230	6.45	OK
34	0.009	0.230	4.13	OK
35	0.020	0.230	8.85	OK
36	0.010	0.230	4.17	OK
37	0.022	0.230	9.49	OK
38	0.008	0.230	3.62	OK
39	0.008	0.230	3.58	OK
40	0.010	0.230	4.36	OK

Page 49 Rev. 00

Test Result: Pass Status: Test Completed

Pst_i and limit line European Limits

Time is too short for Plt plot

Parameter values recorded during the test:

Vrms at the end of test (Volt):	229.68			
Highest dt (%):	0.00	Test limit (%):	3.14	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.14	Pass
Highest dmax (%):	0.00	Test limit (%):	3.80	Pass
Highest Pst (10 min. period):	0.001	Test limit:	0.950	Pass
Highest Plt (2 hr. period):	0.001	Test limit:	0.617	Pass

Page 50 Rev. 00

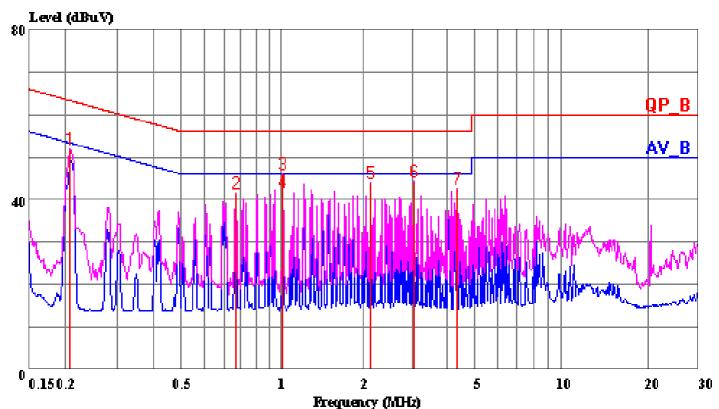
Date of Issue: October 31, 2005

APPENDIX III -TEST RESULT OF FINAL DATAS

Conducted Emission Plot

Radiated Emission Data

Page 51 Rev. 00



No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C.

Page: 1

Tel:02-2217-0894 Fax:02-2217-1029

Data#: 18 File#: 51021211cb.EMI Date: 2005-10-24 Time: 14:43:26

(CCS Conduction B)

Trace: 15 14 Ref Trace:

Condition: LINE

Report No. : 51021211 Test Engr. : ALEX PAN

Company : AAEON Technology Inc.

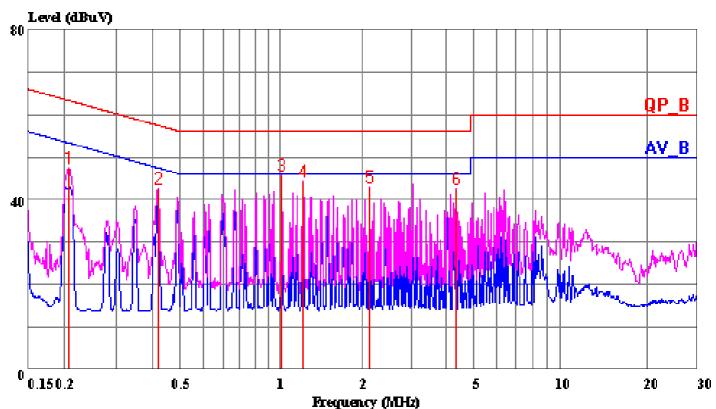
EUT : ONYX-193

Test Config : EUT / ALL PERIPHERALS

Type of Test: EN 55011 CLASS B

Mode of Op. : LCD+Panel(1280X1024, VF=75Hz)/WORST

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.207	41.98	9.97	51.95	63.32	-11.37	Peak
2	0.767	31.70	10.00	41.70	56.00	-14.30	Peak
3	1.117	36.14	10.03	46.17	56.00	-9.83	Peak
4	1.117	32.02	10.03	42.05	46.00	-3.95	Average
5	2.237	33.83	10.14	43.97	56.00	-12.03	Peak
6	3.140	34.20	10.15	44.36	56.00	-11.64	Peak
7	4.454	32.43	10.20	42.63	56.00	-13.37	Peak



No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C.

Page: 1

Tel:02-2217-0894 Fax:02-2217-1029

Data#: 13 File#: 51021211cb.EMI Date: 2005-10-24 Time: 14:39:26

(CCS Conduction B)

Trace: 12 11 Ref Trace:

Condition: NEUTRAL
Report No. : 51021211
Test Engr. : ALEX PAN

Company : AAEON Technology Inc.

EUT : ONYX-193

Test Config : EUT / ALL PERIPHERALS

Type of Test: EN 55011 CLASS B

Mode of Op. : LCD+Panel(1280X1024, VF=75Hz)/WORST

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1 2	0.207 0.419	37.51 32.69	9.97 9.97			-15.84 -14.80	
3	1.117	35.65	10.01			-10.34	
4	1.317	34.31	10.02	44.33	56.00	-11.67	Peak
5	2.237	33.08	10.04	43.12	56.00	-12.88	Peak
6	4.454	32.54	10.10	42.64	56.00	-13.36	Peak

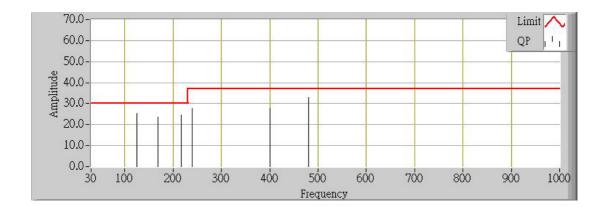
Site #I

Tel: +886-2-2217-0894 Fax: +886-2-2217-1029

No. 165, Chung Sheng Rd., Hsin Tien City, Taipei, Taiwan. (Hsin Tien Lab.)

Job No.: 51021211 Standard: CISPR 22-10m-B Tested Distance: 10m Date: 2005/10/21

Temp.($^{\circ}$) / Hum.($^{\circ}$):26 $^{\circ}$ C/56 $^{\circ}$ Company: AAEON Technology Inc.


Model: ONYX-193

Test Mode / Description:

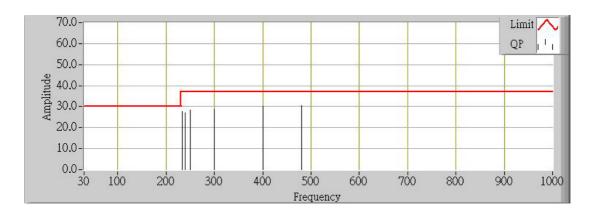
LCD+Panel (1280X1024, VF=75Hz)/WORST

Test Item: EN 55011 CLASS B Power Source: 230VAC, 50Hz

Ant. Polar: Vertical Time: PM 04:45 Tested By: Peter Jou Trade Name: AAEON

No.	Freq.	Reading	factor	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	125.010	34.45	-9.25	25.20	30.00	-4.80	0.00	0.00	QP
2	169.000	34.70	-11.04	23.66	30.00	-6.34	0.00	0.00	QP
3	217.450	35.30	-10.59	24.71	30.00	-5.29	0.00	0.00	QP
4	240.050	36.41	-8.63	27.78	37.00	-9.22	0.00	0.00	QP
5	400.050	32.00	-4.11	27.89	37.00	-9.11	0.00	0.00	QP
6	480.040	35.12	-2.35	32.77	37.00	-4.23	0.00	0.00	QP

No. 165, Chung Sheng Rd., Hsin Tien City, Taipei, Taiwan. (Hsin Tien Lab.)


Job No.: 51021211 Test Item: EN 55011 CLASS B Standard: CISPR 22-10m-B Power Source: 230VAC, 50Hz

Tel: +886-2-2217-0894 Fax: +886-2-2217-1029

Tested Distance: 10m Ant. Polar: Horizontal Date: 2005/10/21 Time: PM 05:19 Temp.($^{\circ}$) / Hum.($^{\circ}$):26 $^{\circ}$ C/56 $^{\circ}$ Tested By: Peter Jou Company: AAEON Technology Inc. Trade Name: AAEON

Model: ONYX-193 Test Mode / Description:

LCD+Panel (1280X1024, VF=75Hz)/WORST

No.	Freq.	Reading	factor	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	232.750	37.10	-9.26	27.84	37.00	-9.16	0.00	0.00	QP
2	240.020	35.52	-8.63	26.89	37.00	-10.11	0.00	0.00	QP
3	250.030	36.10	-7.76	28.34	37.00	-8.66	0.00	0.00	QP
4	300.010	35.65	-6.76	28.89	37.00	-8.11	0.00	0.00	QP
5	400.040	34.12	-4.11	30.01	37.00	-6.99	0.00	0.00	QP
6	480.050	33.00	-2.35	30.65	37.00	-6.35	0.00	0.00	QP