

CE EMC

TEST REPORT

For

Medical Station

Model: ONYX-173D; ONYX-153D

Trade Name: AAEON

Issued to

AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Hsintien Lab. No. 165, Chunghsen Road, Hsintien City Taipei Hsien, Taiwan TEL: (02) 2217-0894 FAX: (02) 2217-1029

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	
2	EUT DESCRIPTION	4
3	TEST METHODOLOGY	5
	3.1 EUT SYSTEM OPERATION	5
4	SETUP OF EQUIPMENT UNDER TEST	6
5	FACILITIES AND ACCREDITATIONS	7
	 5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS 	7 7
6	INSTRUMENT AND CALIBRATION	8
	 6.1 MEASURING INSTRUMENT CALIBRATION 6.2 TEST AND MEASUREMENT EQUIPMENT 	
7	LINE CONDUCTED & RADIATED EMISSION TEST	11
	 7.1 LIMIT 7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION	12 14
8	POWER HARMONICS TEST	18
9	POWER VOLTAGE FLUCTUATION / FLICKER TEST	20
10	ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST	22
11	RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	26
12	FAST TRANSIENTS/BURST IMMUNITY TEST	29
13	SURGE IMMUNITY TEST	31
14	CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST	33
15	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	35
16	VOLTAGE DIPS / SHORT INTERRUPTIONS	37
AP	PENDIX I - PHOTOGRAPHS OF TEST SETUP	40
AP	PENDIX II – TEST RESULT OF EN 61000-3-2/-3	47

1 TEST RESULT CERTIFICATION

Applicant:	AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.
Manufacturer:	AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.
Equipment Under Test:	Medical Station
Trade Name:	AAEON
Model:	ONYX-173D; ONYX-153D
Detailed EUT Description:	See Item 2 of this report
Date of Test:	October 26, 2005 ~ November 10, 2005

Applicable Standard	Class/Limit/Criterion	Test Result			
EN 60601-1-2: 2001, including					
EN 55011: 1998 + A1: 1999 + A2: 2002	Group I, Class B	No non-compliance noted			
IEC 61000-4-2: 1995 +A1: 1998 +A2: 2000	See Item 9 of this report	No non-compliance noted			
IEC 61000-4-3: 2002 +A1: 2002	See Item 10 of this report	No non-compliance noted			
IEC 61000-4-4: 1995 +A1: 2000 +A2: 2001	See Item 11 of this report	No non-compliance noted			
IEC 61000-4-5: 1995 + A1: 2000	See Item 12 of this report	No non-compliance noted			
IEC 61000-4-6: 1996 + A1: 2000	See Item 13 of this report	No non-compliance noted			
IEC 61000-4-8: 1993 + A1: 2000	See Item 14 of this report	No non-compliance noted			
IEC 61000-4-11: 1994 + A1: 2000	See Item 15 of this report	No non-compliance noted			
EN 61000-3-2: 2000	Class D	No non-compliance noted			
EN 61000-3-3: 1995 + A1: 2001	Limit	No non-compliance noted			
Deviation from Applicable Standard					
None					

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in the EMC Directive 93/42/EEC and the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

David Wang Manager of Hsintien Laboratory Compliance Certification Services Inc.

Reviewed by: MANG

Vince Chiang Assistant Manager of Hsintien Laboratory Compliance Certification Services Inc.

2 EUT DESCRIPTION

Product	Medical Station
Trade Name	AAEON
Model	ONYX-173D; ONYX-153D
Housing Type	Plastic w/ metal plate
EUT Power Rating	15VDC from AC Adaptor
AC Power During Test	230VAC / 50Hz to AC Adaptor
AC Adaptor Manufacturer	FSP
AC Adaptor Model Number	FSP105-AGB
AC Adaptor Power Rating	I/P: 100-240VAC 50-60Hz O/P: 15VDC
AC Power Cord Type	Unshielded, 1.8m (Non-detachable)
DC Power Cord Type	Unshielded, 1.9m (Detachable, with a core)
OSC/Clock Frequencies	14.31818MHz; 25MHz; 32.768kHz

EUT DIFFERENCE

	Model Name	Differences (Faceplate)	Differences (Panel M/N)	Tested (Checked)
Original	ONYX-173D	17" TFT LCD	CLAA17EA-07Y	\boxtimes
Additional	ONYX-153D	15" TFT LCD	CLAA150XP03	\boxtimes

I/O PORT OF EUT

I/O PORT TYPE	Q' TY	TESTED WITH
1). PIO Port	1	1
2). SIO Port	3	3
3). PS/2 Keyboard Port	1	1
4). PS/2 Mouse Port	1	1
5). VIDEO-OUT Port (VGA)	1	1
6). AUDIO IN Port	2	2
7). Earphone Port	1	1
8). Microphone Port	1	1
9). LAN Port	1	1
10). USB Port	5	5
11). S-VIDEO OUT Port	1	1
12). CF Slot	1	1
13). SD Slot	1	1
14). SM Slot	1	1
15). Memory Stick Slot	1	1

Note: None.

3 TEST METHODOLOGY

3.1 EUT SYSTEM OPERATION

- 1. Windows 2000 boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.
- 3. Run Winemc.exe and choose "E:/ & F:/ & G:/ & H:/ & I:/ & J:/ & K:/ & L:/ & I:/" to test EUT.
- 4. Run Winemc.exe and choose media player to play music.
- Press the start menu, select executive and type ping 192.168.0.2 –t (EUT), ping 192.168.0.1 –t (Server PC).

Note: Test program is self-repeating throughout the test.

3.2 DECISION OF FINAL TEST MODE

1. The following test mode(s) were scanned during the preliminary test:

Mode(s):

1.	ONYX-173D / PANEL + LCD / 1280X1024, VF=75Hz
2.	ONYX-173D / PANEL + LCD / 1024X768, VF=70Hz
3.	ONYX-173D / PANEL + LCD / 800X600, VF=60Hz
4.	ONYX-173D / PANEL + TV / 1024X768, VF=60Hz
5.	ONYX-173D / PANEL + TV / 800X600, VF=60Hz
6.	ONYX-153D / PANEL + LCD / 1280X1024, VF=75Hz

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Conduction: Mode 1

Radiation: Mode 1

Then, the EUT configuration and cable configuration of the above highest emission mode was chosen for all final test items.

4 SETUP OF EQUIPMENT UNDER TEST

Setup Diagram

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

Support Equipment

EUT Devices:

No	Equipment	Model #	Trade Name
1	CPU (1.6GHz)	N/A	Genuine Intel Mobile
2	DVD ROM	DV-28SL	TEAC
3	Hard Disk	MHT2020AT	FUJITSU
4	Memory (512MB)	DDR333MHz	DSL

Peripherals Devices:

No	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade Name	Data Cable	Power Cord
1	Ear / Mic	MSB301	N/A	N/A	e-Sense	Unshielded, 1.8m	N/A
2	Player	RQ-L317	N/A	N/A	PANASONIC	Unshielded, 1.8m	N/A
3	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 2.0m	Unshielded, 1.8m with a core
4	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 2.0m	Unshielded, 1.8m with a core
5	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 2.0m	Unshielded, 1.8m with a core
6	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 2.0m	Unshielded, 1.8m with a core
7	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 2.0m	Unshielded, 1.8m with a core
8	PS/2 Mouse	M071KC	443029438	BSMI: R41108 DoC	DELL	Shielded, 1.8m	N/A
9	PS/2 Keyboard	SK-8110	N/A	BSMI: T3A002 DoC	DELL	Shielded, 1.8m	N/A
10	Printer	C60	N/A	BSMI ID: 3902E006	EPSON	Shielded, 1.8 m	Unshielded, 1.8m
11	Monitor (TV)	KD17NS	7728	BSMI: R33475	SAMAUNG	Shielded, 1.8m	Unshielded, 1.8m
12	Monitor	171T	GH17H4LT702622L	R33475	SAMSUNG	Shielded, 1.8m with two cores	Unshielded, 1.8m
13	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP - SOLUTION	Shielded, 1.8m	Unshielded, 1.8m
14	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP - SOLUTION	Shielded, 1.8m	Unshielded, 1.8m
15	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP - SOLUTION	Shielded, 1.8m	Unshielded, 1.8m
16	Server PC	5420GC	1D23KMDWM08	DoC BSMI ID: 3892B894	COMPAQ	Unshielded, 10m	Unshielded, 1.8m
17	SD Card	N/A	N/A	N/A	N/A	N/A	N/A
18	SM Card	N/A	N/A	N/A	N/A	N/A	N/A
19	MS Card	N/A	N/A	N/A	N/A	N/A	N/A
20	CF Card	N/A	N/A	N/A	N/A	N/A	N/A

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test. *Grounding:* Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities (except above 1GHz measurement frequency of IEC 61000-4-3) used to collect the measurement data are located at CCS Taiwan Hsintien Lab at No. 165, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan.

The measurement facilities of IEC 61000-4-3 frequency rang above 1GHz are located at CCS Taiwan Wuku Lab. at No. 11, Wu-Kung 6 Rd., Wu-Ku Hsiang, Wu-Ku Industrial District, Taipei Hsien, Taiwan

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform Electromagnetic compatibility tests are registered or accredited by the organizations listed in the following table which includes the recognized scope specifically.

Country	Agency	Scope of Accreditation	Logo
USA	SA A2LA CFR 47, FCC Part 15/18 using ANSI 63.4; AS/NZS 3548; VCCI V3; CNS 13438; CNS 13439; CNS 13783; CNS 14115; CISPR 11/EN 55011; CISPR 14-1/EN 55014-1; CISPR 15/EN 55015; CISPR 22/EN 55022; EN 50081-1/EN 61000-6-3; EN 50082-1/EN 61000-6-4; IEC/EN 61000-4-2, IEC/EN 61000-4-3, IEC/EN 61000-4-4, IEC/EN 61000-4-2, IEC/EN 61000-4-6, IEC/EN 61000-4-8, IEC/EN 61000-4-5, IEC/EN 61000-4-6, IEC/EN 61000-4-8, IEC/EN 61000-4-11, IEC/EN 61000-3-2, IEC/EN 61000-3-3; CISPR 24/EN 55024; CISPR 14-2/EN 55014-2; EN 50081-2/EN 61000-6-1; EN 50082-2/EN 61000-6-2.		ACCREDITED 824.01
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 250366
Japan	VCCI	3/10 meter Open Area Test Sites and Line Conducted Test Room to perform conducted/radiated measurements	VCCI R-1434/1630~4 C-1511/1882
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, Cispr 16-1/2/3/4	ELA 103
Taiwan	CNLA	47 CFR FCC Part 15 Subpart B, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 13438, AS/NZS 3548, VCCI, CNS 13022-1/2/3, EN 55022, EN 55013, EN 55014-1, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, ENV 50141, ENV 50142	LINLA 1108 ILAG MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439	SL2-IN-E-0005 SL2-A1-E-0005 SL2-R1-E-0005 SL2-R2-E-0005
Canada	Industry Canada	RSS212, Issue 1	Canada IC 5742

Note: No part of this report may be used to claim or imply product endorsement by CNLA, A2LA or other government agency.

6 INSTRUMENT AND CALIBRATION

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 TEST AND MEASUREMENT EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective manual.

Open Area Test Site # I						
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE		
SITE NSA	CCS	I Site	N/A	10/14/2006		
MEASURE RECEIVER	SCHAFFNER	SCR3501	338	06/27/2006		
SPECTRUM ANALYZER	ADVANTEST	R3132	120900008	No Calibration Required		
ANTENNA	SCHAFFNER	CBL 6112B	2809	09/23/2006		
AMPLIFIER	SCHAFFNER	CPA9231A	3626	10/08/2006		
CABLE	BELDEN	9913	N-TYPE #I2	02/18/2006		
ATTENUATOR	MCL	UNAT-6	AT06-3	10/08/2006		
THERMO- HYGRO METER	TFA	N/A	NO.2	11/02/2006		

Equipment Used for Emission Measurement

Note: The measurement uncertainty is less than +/- 3.36dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Conducted Emission Test Site # B							
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE			
TEST RECEIVER	R&S	ESHS10	843743/015	03/31/2006			
LISN (EUT)	EMCO	3825/2	9106-1810	01/16/2006			
LISN	EMCO	3825/2	1382	01/16/2006			
BNC CABLE	MIYAZAKI	5D-FB	BNC B1	07/14/2006			
Pulse Limiter	R&S	ESH3-Z2	100374	08/25/2006			
THERMO- HYGRO METER	TOP	HA-202	9303-3	03/02/2006			

Note: The measurement uncertainty is less than +/- 2.83dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Power Harmonic & Voltage Fluctuation/Flicker Test Site (EN 61000-3-2&-3-3)						
Manufacturer/Type	Cal. Due					
Schaffner / Signal Conditioning Unit	CCN 1000-1	72122	12/05/2005			
Schaffner / 5KVA AC Power Source	NSG 1007	55131	No Calibration Required			

Equipment Used for Immunity Measurement

ESD Test Site (EN 61000-4-2)							
Manufacturer/Type Model No. Serial No. Cal. Due							
Schaffner / ESD Simulator	NSG 438	129	04/20/2006				
Sato / Aneroid Barometer	7610-20	89090	08/29/2006				
TOP / Thermo-Hygro meter	HA-202	9303-1	03/02/2006				

Radiated Electr	omagnetic Field Imr	nunity Test Site (EN	61000-4-3)	
Manufacturer/Type	Model No.	Serial No.	Cal. Due	
Calibration of Field	Chamber#RS	RS3H-7 / RS3V-7	07/01/2006	
Agilent / Signal Generator	E4421B	MY43350597	05/16/2006	
AR / Electric Field Probe	FP6001	305650	02/03/2006	
Boonton / RF Voltmeter	9200B	328001AE	02/23/2006	
BNC / Function Generator	625A	25451	02/17/2006	
AR / Amplifier	100W1000M1	17564	No Calibration Required	
Werlatone Inc. / Direction Coupler	C2630	4121	No Calibration Required	
Frankonia / Broadband Antenna	BTA-M	030001M	No Calibration Required	
TOP / Thermo-Hygro meter	HA-202	9303-2	03/02/2006	

Fast Transients/Burst Test Site (EN 61000-4-4)						
Manufacturer/Type	Serial No.	Cal. Due				
Schaffner / EFT Generator	affner / EFT Generator BEST EMC V2.3		11/09/2005			
Schaffner / Capacitive Clamp	N/A	N/A	No Calibration Required			

Surge Immunity Test Site (EN 61000-4-5)					
Manufacturer/Type	Serial No.	Cal. Due			
Schaffner / Surger Generator	BEST EMC V2.3 200031A024SC		11/09/2005		
Schaffner / Signal and Data Lines Coupling Network	CDN118	19328	No Calibration Required		

	CS test (EN 61000-4-6)							
Manufacturer/Type	Model No.	Serial No.	Cal. Due					
Schaffner / RF Generator	NSG 2070-1	1061	08/03/2006					
Schaffner / CDN	CDN M316	19600	08/02/2006					
Schaffner / CDN	CDN M216	19294	08/02/2006					
FCC / CDN	FCC-801-M3-16A	99122	08/02/2006					
Schaffner / EM Clamp	KEMZ 801	19227	02/23/2006					
Schaffner / CDN	CDN T002	15881	01/13/2006					
FCC / CDN	FCC-801-T8-RJ45	04025	06/23/2006					
Schaffner / Attenuator	INA2070-1	INA2070-1 2061 No Calibrati Required						
FCC / CDN	FCC-801-T4-RJ45	04031	08/02/2006					

Power Frequency Magnetic Field Immunity test (EN 61000-4-8)							
Manufacturer/Type	Serial No.	Cal. Due					
Schaffner / Induction Coil Interface	INA 21141	6009	No Calibration Required				
Schaffner / 5KVA AC Power Source	NSG 1007	55131	No Calibration Required				
Sypris / Magnetic Field Meter	4080	0247	01/19/2006				

Voltage Dips/Short Interruption and Voltage Variation Immunity test (EN 61000-4-11)						
Manufacturer/Type	Serial No.	Cal. Due				
Schaffner / Dips/Interruption/Variations Tester	BEST EMC V2.3	200031A024SC	11/09/2005			
Protronix / Digital Power Meter	1201	201091	08/24/2006			

7 LINE CONDUCTED & RADIATED EMISSION TEST

7.1 LIMIT

Maximum permissible level of Line Conducted Emission

Frequency	Class A	(dBµV)	Class B (dBµV)		
(MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 10 meter

Frequency	Class A (dBµV/m)	Class B (dBµV/m)	
(MHZ)	Quasi-peak	Quasi-peak	
30 - 230	40	30	
230 - 1000	47	37	

Note: The lower limit shall apply at the transition frequency.

7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION

Procedure of Preliminary Test

- The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical actual usage as per EN 55011.
- The test equipment EUT installed received AC power, 230VAC/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
x.xx	42.95	0.55	43.50	56	-12.50	Q	L1

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading

Factor = Insertion loss of LISN + Cable Loss

Report No.: 51026202-E

Level = Read Level + Factor

Limit = Limit stated in standard

- Over Limit = Reading in reference to limit
- P = Peak Reading
- Q = Quasi-peak Reading
- A = Average Reading
- L1 = Hot side

L2 = Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) - Limit (dBuV)

7.3 TEST PROCEDURE OF RADIATED EMISSION

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical usage as per EN 55011.
- The EUT received AC power source, 230VAC/50Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Over Limit dB	Reading Type (P/Q/A)	Pol. (H/V)
x.xx	14.0	12.2	26.2	30	-3.8	Q	Н

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading

Report No.: 51026202-E

		•	-		
Factor	= Antenna Factor +	- Cable Loss +	Attenuator ((3/6/10 dB)) – Amplifier Gain

Level = Read Level + Factor

Limit = Limit stated in standard

- Over Limit = Reading in reference to limit
- P = Peak Reading
- Q = Quasi-peak Reading
- A = Average Reading

H = Antenna Polarization: Horizontal

V = Antenna Polarization: Vertical

Calculation Formula

Over Limit (dB) = Level (dBuV/m) – Limit (dBuV/m)

Report No.: 51026202-E

7.4 TEST RESULTS

Line Conducted Emission

Model: ONYX-173D

Temperature: 23°C

Test Results: Passed

Test Mode: Mode 1 Humidity: 57% RH Tested by: WEBBER JUNG

(The chart below shows the highest readings taken from the final data)

	Six Highest Conducted Emission Readings						
Fre	Frequency Range Investigated				150 kHz (to 30 MHz	
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)
0.421	31.23	9.97	41.20	57.42	-16.22	Р	L1
0.253	33.97	9.97	43.94	61.64	-17.70	Р	L2
0.332	34.17	9.97	44.14	59.40	-15.26	Р	L2
0.421	34.49	9.97	44.46	57.42	-12.96	Р	L2
0.499	32.60	9.98	42.58	56.01	-13.43	Р	L2
12.188	31.44	10.37	41.81	60.00	-18.19	Р	L2

NOTE: The emission level was or more than 2dB below the Average limit, so no re-check anymore.

Radiated Emission

Model: ONYX-173D

Temperature: 25°C

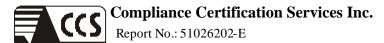
Test Results: Passed

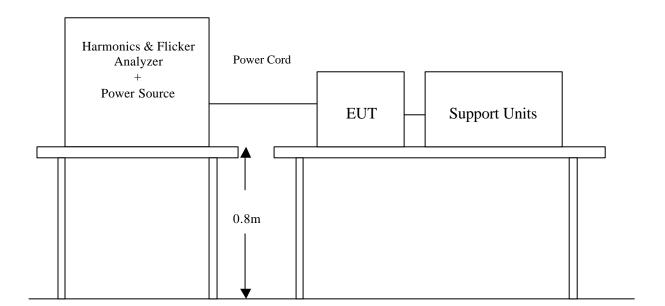
Test Mode: Mode 1 Humidity: 61% RH Tested by: MARK HSU

(The chart below shows the highest readings taken from the final data)

	Six Highest Radiated Emission Readings						
Fre	Frequency Range Investigated				30 MHz to 1000 MHz at 10m		
Freq (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Reading Type (P/Q/A)	Pol. (H/V)
125.008	35.70	-9.25	26.45	30.00	-3.55	Q	V
135.310	33.00	-9.63	23.37	30.00	-6.63	Q	V
160.010	37.50	-11.07	26.43	30.00	-3.57	Q	V
233.500	40.50	-9.20	31.30	37.00	-5.70	Q	V
233.500	38.90	-9.20	29.70	37.00	-7.30	Q	Н
480.041	32.30	-2.35	29.95	37.00	-7.05	Q	H

NOTE: None.

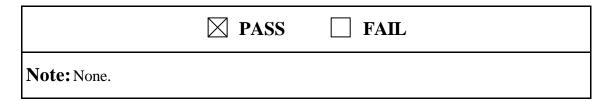



8 POWER HARMONICS TEST

Port	:	AC Power Port
Basic Standard	:	EN 61000-3-2 (2000)
Limits	:	\Box CLASS A; \Box CLASS B; \Box CLASS C; \boxtimes CLASS D
Teste d by	:	KEVIN CHANG
Temperature	:	18°C
Humidity	:	53%

Limit:

Limits for Class A equipment		Limits for Class D equipment			
Harmonics Order n	Max. permissible harmonics current A	Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A	
Od	d harmonics		Odd Harmonics only	7	
3	2.30	3	3.4	2.30	
5	1.14	5	1.9	1.14	
7	0.77	7	1.0	0.77	
9	0.40	9	0.5	0.40	
11	0.33	11	0.35	0.33	
13	0.21	13	0.30	0.21	
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n	
Eve	en harmonics				
2	1.08				
4	0.43				
6	0.30				
8<=n<=40	0.23x8/n				

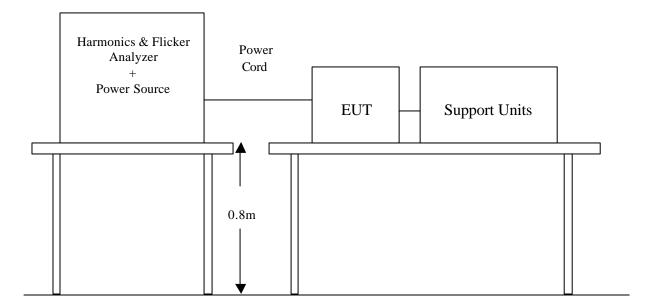


Block Diagram of Test Setup:

Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

<u>**Test Result</u>** : (See Appendix II for details)</u>


9 POWER VOLTAGE FLUCTUATION / FLICKER TEST

Port	: AC Power Port
Basic Standard	: EN 61000-3-3 (1995 + A1: 2001)
Limits	: § of EN 61000-3-3
Tested by	: KEVIN CHANG
Temperature	: 18°C
Humidity	: 53%

Limit:

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T_{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

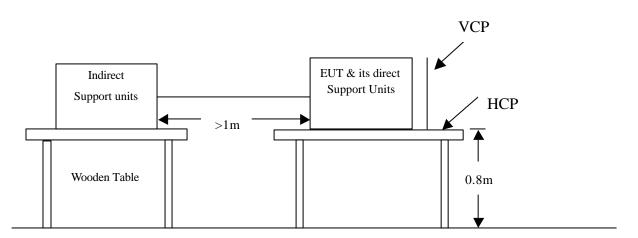
Block Diagram of Test Setup:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

Test Parameter	Measurement Value	Limit	Result
P _{st}	0.001	1.0	Pass
P _{lt}	0.001	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Test Result: (See Appendix II for details)

Note: None.



10 ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port	: Enclosure		
Basic Standard	: IEC/EN 61000-4-2		
Test Level	: ±2, 4, 8 kV (Air Discharge)		
	±2, 4, 6 kV (Contact Discharge)		
Performance Criterion	: The Equipment or System shall be able to provide the		
	essential performance and remain safe.		
Teste d by	: BENSON YANG		
Temperature	: 18°C		
Humidity	: 53% RH		
Pressure	: 1010mbar		

Block Diagram of Test Setup:

(The 470 k O resistors are installed per standard requirement.)

Ground Reference Plane

Amount of Discharges	Voltage	Coupling	Result (Pass/Fail)
20 / Point	± 2, 4, 8 kV	Air Discharge	Pass
20 / Point	± 2, 4, 6 kV	Contact Discharge	Pass
20 / Point	± 2, 4, 6 kV	Indirect Discharge HCP	Pass
20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Front)	Pass
20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Left)	Pass
20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Back)	Pass
20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Right)	Pass

The electrostatic discharges were applied as follows:

Report No.: 51026202-E

**For the tested points to EUT, please refer to attached page. (Blue Arrow Mark For Contact Discharge And Red Arrow Mark For Air Discharge)

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

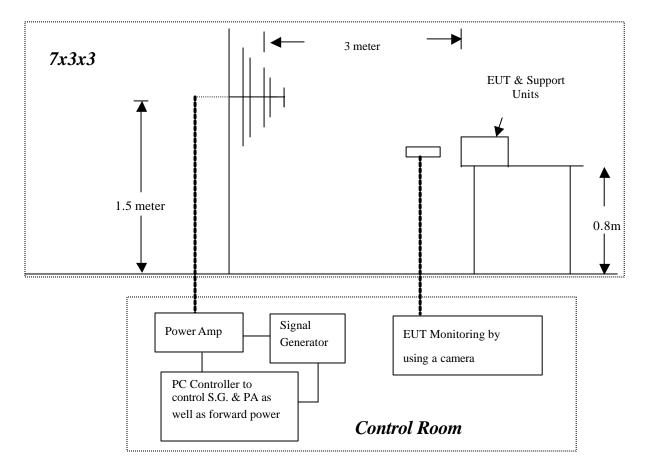
The Tested Points of EUT

Photo 1 of 4

Photo 2 of 4

Photo 3 of 4

Photo 4 of 4



11 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port	: Enclosure
Basic Standard	: IEC/EN 61000-4-3
Requirements	: 3 V/m with 80% AM, 1kHz Modulation.
Performance Criterion	: The Equipment or System shall be able to provide the essential performance and remain safe.
Tested by	: BENSON YANG
Temperature	: 18°C
Humidity	: 53% RH
Pressure	: 1010mbar

Block Diagram of Test Setup:

Frequency Range	80MHz ~ 2500MHz
Steps	: 1 % of fundamental
Dwell Time	: 3 sec

Range (MHz)	Field	Modulation	Polarity	Position	Result (Pass/Fail)
80-2500	3V/m	Yes	Н	0	Pass
80-2500	3V/m	Yes	V	0	Pass
80-2500	3V/m	Yes	Н	90	Pass
80-2500	3V/m	Yes	V	90	Pass
80-2500	3V/m	Yes	Н	180	Pass
80-2500	3V/m	Yes	V	180	Pass
80-2500	3V/m	Yes	Н	270	Pass
80-2500	3V/m	Yes	V	270	Pass

Observation: No function degraded during the tests.

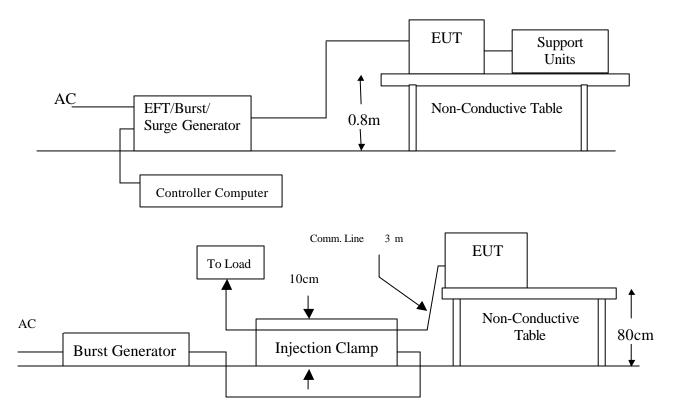
Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or


safety.

12 FAST TRANSIENTS/BURST IMMUNITY TEST

Port	: AC Power Port and RJ45 Port
Basic Standard	: IEC/EN 61000-4-4
Requirements	: $\pm 2 \text{ kV}$ for AC Power Port
	± 0.5 kV for RJ45 Port
Performance Criterion	: The Equipment or System shall be able to provide the essential performance and remain safe.
Tested by	: BENSON YANG
Temperature	: 18°C
Humidity	: 53%
Pressure	: 1010mbar

Block Diagram of Test Setup:

Impulse Frequency	: 5kHz
Tr/Th	: 5/50ns
Burst Duration	: 15ms
Burst Period	: 300ms

Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)
L	± 2	Direct	Pass
N	± 2	Direct	Pass
PE	± 2	Direct	Pass
L + N	± 2	Direct	Pass
L + PE	± 2	Direct	Pass
N + PE	± 2	Direct	Pass
L + N + PE	± 2	Direct	Pass
RJ45	± 0.5	Clamp	Pass

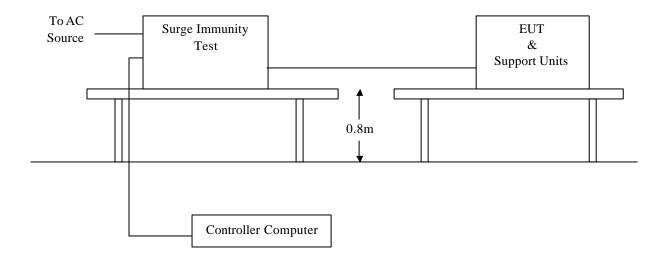
Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.


The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

13 SURGE IMMUNITY TEST

Port	: AC Power Port
Basic Standard	: IEC/EN 61000-4-5
Requirements	: $\pm 1 \text{ kV}(\text{Line to Line})$ for AC Power Port
	$\pm 2kV$ (Line to Ground) for AC Power Port
Performance Criteria	: The Equipment or System shall be able to provide the essential performance and remain safe.
Teste d by	: BENSON YANG
Temperature	: 18°C
Humidity	: 53%
Pressure	: 1010mbar

Block Diagram of Test Setup:

Voltage Waveform	: 1.2/50 µs
Current Waveform	: 8/20 μs
Polarity	: Positive/Negative
Phase angle	: 0°, 90°,180°,270°,359°
Number of Test	:5

Report No.: 51026202-E

Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2	±1	Positive	Capacitive	Pass
L1-PE	±1、±2	Positive	Capacitive	Pass
L2-PE	±1、±2	Positive	Capacitive	Pass
L1-L2	±1	Negative	Capacitive	Pass
L1-PE	±1、±2	Negative	Capacitive	Pass
L2-PE	±1、±2	Negative	Capacitive	Pass

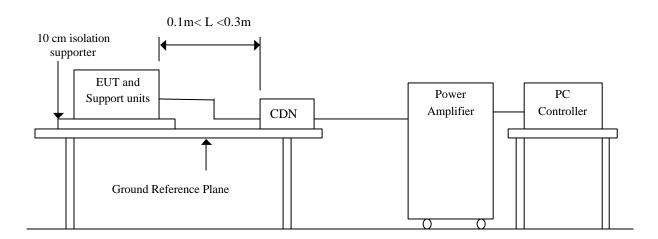
Observation: Where normal functioning of LAN can't be achieved because of the impact of CDN on the EUT, no test be required.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.


The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

14 CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST

Port	: AC Power Port and RJ45 Port
Basic Standard	: IEC/EN 61000-4-6
Requirements	: 3 V with 80% AM, 1kHz Modulation.
Injection Method	: CDN-M3 for AC Power Port
	CDN-T4 for RJ45 Port
Performance Criterion	: The Equipment or System shall be able to provide the essential performance and remain safe.
Teste d by	: BENSON YANG
Temperature	: 18°C
Humidity	: 53%
Pressure	: 1010mbar

Block Diagram of Test Setup:

Frequency Range	: 0.15MHz-80MHz
Frequency Step	: 1% of fundamental
Dwell Time	: 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	3V	Yes	Pass

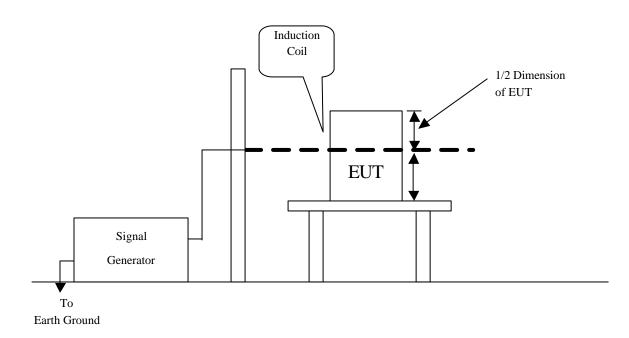
Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.


The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

15 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port	:	Enclosure
Basic Standard	:	IEC/EN 61000-4-8
Requirements	:	3 A/m, 50Hz
Performance Criterion	:	The Equipment or System shall be able to provide the essential performance and remain safe.
Teste d by	:	BENSON YANG
Temperature	:	18°C
Humidity	:	53% RH
Pressure	:	1010mbar

Block Diagram of Test Setup:

Field Strength	:	3A/m
Power Freq.	:	50Hz, 60Hz
Orientation	:	X, Y, Z

Orientation	Field	Result	Remark
X	3A/m, 50Hz	Pass	No any function degraded during the tests.
Y	3A/m, 50Hz	Pass	No any function degraded during the tests.
Z	3A/m, 50Hz	Pass	No any function degraded during the tests.

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

16 VOLTAGE DIPS / SHORT INTERRUPTIONS

Basic Standard : IEC/EN 61000-4-11

Requirement	: PHASE ANGLE	0°, 180°
-------------	---------------	----------

	Test Level % U _T	Reduction (%)	Duration (periods)
Voltage Dips	<5	>95	0.5
D P B	40	60	5
	70	30	25

Voltage	Test Level	Reduction	Duration
Interruptions	% U _T	(%)	(second)
merruptions	<5	>95	5

Test Interval: Min. 10 sec.Performance Criteria: The Equipment or System shall be able to provide the
essential performance and remain safe.Tested by: BENSON YANGTemperature: 18°CHumidity: 53%Pressure: 1010mbar

Block Diagram of Test Setup:

Test Procedure:

The duration with a sequence of three dips/interruptions with interval of 10 s minimums (Between each test event)

Voltage Dips:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Result
0	100	0.5	Normal	А
40	60	5	Normal	А
70	30	25	Normal	А

Voltage Interruptions:

Test Level % U _T	Reduction (%)	Duration (second)	Observation	Result
0	100	5	EUT shut down, but EUT can be auto recovered after power turn on.	С

Note:

- 1. Normal No any functions degrade during and after the test.
- 2. For Voltage Interruption, EQUIPMENT and SYSTEMS are allowed a deviation from the requirements of 36.202.1) at the IMMUNITY TEST LEVEL specified in Table 211, provided the EQUIPMENT or SYSTEM remains safe, experiences no component failures and is restorable to the pre-test state with OPERATOR intervention. Determination of compliance is based upon performance of the EQUIPMENT or SYSTEM during and after application of the test sequence.

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

APPENDIX I - PHOTOGRAPHS OF TEST SETUP


LINE CONDUCTED EMISSION TEST (EN 55011)

RADIATED EMISSION TEST (EN 55011)

POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST

ELECTROSTATIC DISCHARGE TEST

RADIATED ELECTROMAGNETIC FIELD TEST

FAST TRANSIENTS/BURST TEST

FAST TRANSIENTS/BURST TEST (IEC 61000-4-4 FOR I/O)

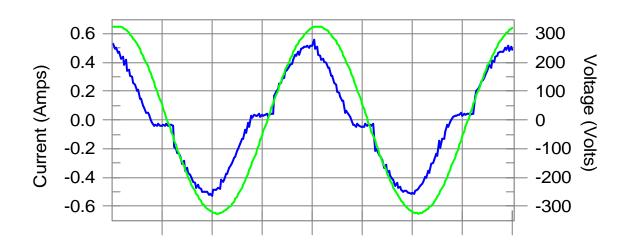
SURGE IMMUNITY TEST

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (IEC 61000-4-6 FOR I/O)

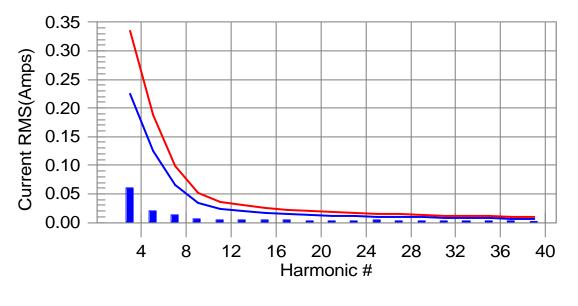
POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

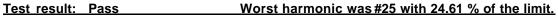
VOLTAGE DIPS / INTERRUPTION TEST



APPENDIX II – TEST RESULT OF EN 61000-3-2/-3

Test Result: Pass


Source qualification: Normal


Current & voltage waveforms

Harmonics and Class D limit line

European Limits

Compliance Certification Services Inc. Report No.: 51026202-E

Test Re	esult: Pass		Source	e qualification:	Normal		
THC(A)	: 0.066 F	THD(pk%):	21.551	POHC(A):	N/A	POHC Lin	nit(A): N/A
. ,	t parameter valu	. ,		1 0110(7.)	1477		
0	· V_RMS (Volts):	•					
	I_Peak (Amps):	0.561		I_RMS (Amps)	: 0.330		
	I_Fund (Amps)			Crest Factor:	1.757		
	Power (Watts):	72		Power Factor:	0.947		
Harm#	Harms(avg) 1	00%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.000						
3	0.059	0.225	26.3	0.060	0.334	17.90	Pass
4 5	0.000 0.020	0.126	15.7	0.020	0.189	10.76	Pass
6	0.000	0.120	15.7	0.020	0.109	10.70	F 8 3 3
7	0.013	0.066	19.0	0.013	0.099	13.12	Pass
8 9	0.000 0.006	0.034	16.4	0.006	0.051	12.70	Pass
10	0.000	0.034	10.4	0.000	0.001	12.70	1 433
11	0.004	0.024	16.7	0.005	0.036	13.79	Pass
12 13	0.000 0.004	0.020	17.7	0.004	0.030	13.63	Pass
13	0.004	0.020	17.7	0.004	0.030	13.03	Fd55
15	0.004	0.017	24.5	0.005	0.026	18.02	Pass
16	0.000	0.045	00.0	0.004	0.000	40.00	Deee
17 18	0.004 0.000	0.015	26.2	0.004	0.023	19.09	Pass
19	0.003	0.014	23.3	0.004	0.021	17.54	Pass
20	0.000	0.040	40.5		0.040	45.45	P
21 22	0.002 0.000	0.012	18.5	0.003	0.019	15.45	Pass
23	0.003	0.011	25.9	0.004	0.017	21.98	Pass
24	0.000						
25 26	0.003 0.000	0.010	30.9	0.004	0.015	24.61	Pass
20	0.003	0.010	28.4	0.003	0.015	22.51	Pass
28	0.000						
29	0.002	0.009	19.0	0.002	0.014	16.91	Pass
30 31	0.000 0.002	0.008	27.3	0.003	0.012	20.56	Pass
32	0.002	0.000	27.5	0.005	0.012	20.50	1 835
33	0.002	0.008	27.1	0.002	0.012	21.17	Pass
34	0.000	0.007	24.4	0.002	0.011	20.46	Deee
35 36	0.002 0.000	0.007	24.1	0.002	0.011	20.46	Pass
37	0.002	0.007	25.4	0.002	0.010	19.81	Pass
38	0.000	•	.				_
39 40	0.002 0.000	0.007	25.3	0.002	0.010	19.53	Pass
40	0.000						

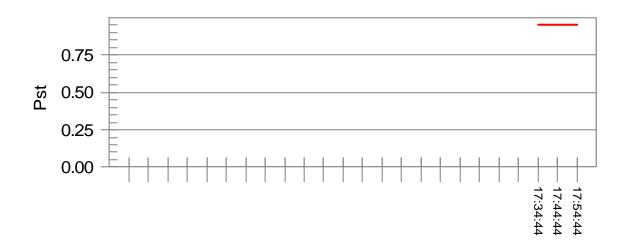
Test Result: Pass

Source qualification: Normal

Highest parameter values during test:

Voltage (Vrms):	230.06		
I_Peak (Amps):	0.561	I_RMS (Amps):	0.330
I_Fund (Amps):	0.328	Crest Factor:	1.757
Power (Watts):	72	Power Factor:	0.947

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.127	0.460	27.62	ОК
3	0.383	2.070	18.49	OK
4	0.044	0.460	9.66	OK
5	0.033	0.920	3.64	ОК
6	0.068	0.460	14.86	OK
7	0.038	0.690	5.49	OK
8	0.035	0.460	7.62	ОК
9	0.054	0.459	11.69	OK
10	0.026	0.459	5.63	OK
11	0.057	0.230	24.94	OK
12	0.021	0.230	9.35	OK
13	0.024	0.230	10.62	OK
14	0.015	0.230	6.73	OK
15	0.019	0.230	8.38	OK
16	0.019	0.230	8.41	OK
17	0.014	0.230	6.15	OK
18	0.023	0.230	9.90	OK
19	0.017	0.230	7.53	OK
20	0.021	0.230	9.08	OK
21	0.028	0.230	12.05	OK
22	0.020	0.230	8.66	OK
23	0.058	0.230	25.33	OK
24	0.020	0.230	8.67	OK
25	0.054	0.230	23.36	OK
26	0.026	0.230	11.34	OK
27	0.034	0.230	14.86	OK
28	0.033	0.230	14.16	OK
29	0.025	0.230	10.83	OK
30	0.065	0.230	28.27	OK
31	0.012	0.230	5.16	OK
32	0.013	0.230	5.55	OK
33	0.013	0.230	5.72	OK
34	0.009	0.230	3.71	OK
35	0.021	0.230	8.93	OK
36	0.008	0.230	3.70	OK
37	0.015	0.230	6.36	OK
38	0.008	0.230	3.42	OK
39	0.008	0.230	3.65	OK
40	0.009	0.230	3.90	OK



Test Result: Pass

Status: Test Completed

Psti and limit line

European Limits

Time is too short for Plt plot

Parameter values recorded during the test:

Vrms at the end of test (Volt):	229.54
Highest dt (%):	0.00
Time(mS) > dt:	0.0
Highest dc (%):	0.00
Highest dmax (%):	0.00
Highest Pst (10 min. period):	0.001
Highest Plt (2 hr. period):	0.001

Test limit (%):	3.14	Pass
Test limit (mS):	500.0	Pass
Test limit (%):	3.14	Pass
Test limit (%):	3.80	Pass
Test limit:	0.950	Pass
Test limit:	0.617	Pass