Date of Issue: June 20, 2007

CE EMC

TEST REPORT

For

Medical Station

Model: XXXXXONYX-150HTy-XX-XXXX (Where y is T or blank and X is 0-9, A-Z, - or blank)

Trade Name: AAEON

Issued to

AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Sindian BU

No.163-1, Jhongsheng Rd., Sindian City, Taipei County 23151, Taiwan

> TEL: (02) 2217-0894 FAX: (02) 2217-1029

Date of Issue: June 20, 2007

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	3
2	EUT DESCRIPTION	
3	TEST METHODOLOGY	
J		
	3.1 EUT SYSTEM OPERATION	5
4	SETUP OF EQUIPMENT UNDER TEST	(
5	FACILITIES AND ACCREDITATIONS	
	5.1 FACILITIES	
	5.2 LABORATORY ACCREDITATIONS AND LISTINGS	
6	INSTRUMENT AND CALIBRATION	8
	6.1 MEASURING INSTRUMENT CALIBRATION	
	6.2 TEST AND MEASUREMENT EQUIPMENT	8
LI	INE CONDUCTED & RADIATED EMISSION TEST	12
	7.1 LIMIT	12
	7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION	
	7.3 TEST PROCEDURE OF RADIATED EMISSION 7.4 TEST RESULTS	15 17
7	POWER HARMONICS TEST	
	POWER VOLTAGE FLUCTUATION / FLICKER TEST	
8		
9	ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST	
10	RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	27
11	FAST TRANSIENTS/BURST IMMUNITY TEST	29
12	SURGE IMMUNITY TEST	31
13		
	IMMUNITY TEST	
14	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	35
15	VOLTAGE DIPS / SHORT INTERRUPTIONS	
ΑI	PPENDIX I - PHOTOGRAPHS OF TEST SETUP	40
ΑI	PPENDIX II – TEST RESULT OF EN 61000-3-3	48

1 TEST RESULT CERTIFICATION

Applicant: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Date of Issue: June 20, 2007

Taipei, Taiwan, R.O.C.

Manufacturer: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City,

Taipei, Taiwan, R.O.C.

Equipment Under Test: Medical Station

Trade Name: AAEON

Model: XXXXXONYX-150HTy-XX-XXXX

(Where y is T or blank and X is 0-9, A-Z, - or blank)

Detailed EUT Description: See Item 2 of this report

Date of Test: June 07, 2007 ~ June 13, 2007

Applicable Standard	Class/Limit/Criterion	Test Result			
EN 60601-1-2: 2001, including					
EN 55011: 1998 + A1: 1999 + A2: 2002	Group I, Class B	No non-compliance noted			
IEC 61000-4-2: 1995 +A1: 1998 + A2: 2000	See Item 9 of this report	No non-compliance noted			
IEC 61000-4-3: 1995 +A1: 1998 + A2: 2000	See Item 10 of this report	No non-compliance noted			
IEC 61000-4-4: 2004	See Item 11 of this report	No non-compliance noted			
IEC 61000-4-5: 1995 + A1: 2000	See Item 12 of this report	No non-compliance noted			
IEC 61000-4-6: 1996 + A1: 2000	See Item 13 of this report	No non-compliance noted			
IEC 61000-4-8: 1993 + A1: 2000	See Item 14 of this report	No non-compliance noted			
IEC 61000-4-11: 1994 + A1: 2000	See Item 15 of this report	No non-compliance noted			
EN 61000-3-2: 2000	Class D	N/A			
EN 61000-3-3: 1995 + A1: 2001 Limit No non-compliance noted					
Deviation from Applicable Standard					
None					

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in the EMC Directive 93/42/EEC and the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

David Wang

Manager of Sindian BU

Compliance Certification Services Inc.

Reviewed by:

Vince Chiang

Assistant Manager of Sindian BU

Compliance Certification Services Inc.

Page 3 Rev. 00

2 EUT DESCRIPTION

Product	Medical Station
Trade Name	AAEON
Model	XXXXXONYX-150HTy-XX-XXXX (Where y is T or blank and X is 0-9, A-Z, - or blank)
Housing Type	Plastic w/ metal plate
EUT Power Rating	15VDC ~ 24VDC from AC Adaptor
AC Power During Test	230VAC / 50Hz to AC Adaptor
AC Adaptor Manufacturer	FSP GROUP INC.
AC Adaptor Model Number	FSP105-AGB
AC Adaptor Power Rating	I/P: 100-240VAC~ 2A, 50-60Hz O/P: 15VDC, 7A
AC Power Cord Type	Unshielded, 1.8m (Detachable) to AC Adaptor
DC Power Cable Type	Unshielded, 1.9m (Non-detachable, with a core) to AC Adaptor
OSC/Clock Frequencies	25MHz; 24.576MHz; 14.31818MHz; 32.768kHz

Date of Issue: June 20, 2007

I/O PORT OF EUT

I/O PORT TYPE	Q'TY	TESTED WITH
1). PIO Port	1	1
2). SIO Port	4	4
3). PS/2 Keyboard Port	1	1
4). PS/2 MOUSE Port	1	1
5). VIDEO-OUT Port (VGA)	1	1
6). AUDIO IN Port	1	1
7). Earphone Port	1	1
8). Microphone Port	1	1
9). LAN Port	1	1
10). USB Port	2	2
11). SD Slot	1	1
12). SF Slot	1	1

Note: Client consigns only one model sample (Model Number is ONYX-150) to test.

Page 4 Rev. 00

3 TEST METHODOLOGY

3.1 EUT system Operation

- 1. Windows XP boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.

Date of Issue: June 20, 2007

- 3. Run Winemc.exe and choose "F:/ & G:/" to test EUT.
- 4. Run Winemc.exe and choose media player to play music.
- 5. Press the start menu, select executive and type ping 192.168.0.2 –t (EUT), ping 192.168.0.1 –t (Server PC).

Note: Test program is self-repeating throughout the test.

3.2 DECISION OF FINAL TEST MODE

1. The following test mode(s) were scanned during the preliminary test:

Mode(s):

1.	1920X1440, VF=60Hz / CRT MODE
2.	1280X1024, VF=60Hz / CRT MODE
3.	1024X768, VF=60Hz / CRT + EUT MODE
4.	800X600, VF=60Hz / CRT + EUT MODE
6.	640X480, VF=60Hz / CRT + EUT MODE

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Conduction: Mode 1

Radiation: Mode 1

Then, the EUT configuration and cable configuration of the above highest emission mode was chosen for all final test items.

Page 5 Rev. 00

4 SETUP OF EQUIPMENT UNDER TEST

Setup Diagram

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

Date of Issue: June 20, 2007

Support Equipment

EUT Devices:

No	Equipment	Model #	Serial #	FCC ID / BSMI ID	Trade Name
1.	CPU (600MHz)	Celeron M Processor 600MHz	N/A	N/A	Intel
2.	LCD (15")	TFT-LCD CLAA150XP 03	N/A	N/A	CPT
3.	HDD	MHV2080AT/40G	N/A	N/A	Fujitsu
4.	Memory	DSL 256MB DDR 333MHz	N/A	N/A	SAMSUNG
5.	DC-DC POWER	EPD-146-3	N/A	N/A	Excellent Power
6.	DVD ROM	DW-224E-C93	N/A	N/A	TEAC

Peripherals Devices:

No	Equipment	Model	Serial No.	FCC ID / BSMI ID	Trade Name	Data Cable	Power Cord
1.	PS/2 Mouse	M071KC	443029438	DoC BSMI: R41108	DELL	Shielded, 1.8m	N/A
2.	PS/2 Keyboard	SK-8110	N/A	DoC BSMI: T3A002	DELL	Shielded, 1.8m	N/A
3.	Player	RQ-L11LT	N/A	BSMI ID: 3912A162	Panasonic	Unshielded, 1.0m	N/A
4.	Ear. / Mic.	MSB301	N/A	N/A	e-Sense	Unshielded, 1.7m	N/A
5.	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	Terasys	Shielded, 1.8m	N/A
6.	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	Terasys	Shielded, 1.8m	N/A
7.	Printer	C20SX	N/A	BSMI ID: 3902E004	EPSON	Shielded, 1.8m	Unshielded, 1.8m
8.	Monitor	202P40	BZ000405640006	FCC ID: A3KM107 BSMI: R33048	PHILIPS	Shielded, 1.8m with two cores	Unshielded, 1.8m
9.	Modem	1414	N/A	IFAXDM1414	ACEEX	Shielded, 1.8m	Unshielded, 1.8m
10.	Modem	1414	N/A	IFAXDM1414	ACEEX	Shielded, 1.8m	Unshielded, 1.8m
11.	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.8m	Unshielded, 1.8m
12.	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.8m	Unshielded, 1.8m
13.	Server PC	DCNE	CV8DH1S	BSMI: R33002	DELL	Unshielded, 20m	Unshielded, 1.8m

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use

Page 6 Rev. 00

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities (except above 1GHz measurement frequency of IEC 61000-4-3) used to collect the measurement data are located at

Date of Issue: June 20, 2007

CCS Taiwan Sindian BU at No.163-1, Jhongsheng Rd., Sindian City, Taipei County 23151, Taiwan.

The measurement facilities of IEC 61000-4-3 frequency rang above 1GHz are located at CCS Taiwan Wuku Lab. at No.11, Wugong 6th Rd., Wugu Township, Taipei County 24891, Taiwan

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform Electromagnetic compatibility tests are registered or accredited by the organizations listed in the following table which includes the recognized scope specifically.

This accredited organization maintains A2LA accreditation to ISO/IEC 17025 for the specific test listed in A2LA Certificate # 0824-01. The test results included in this report, however, are not covered by this accreditation.

Country	Agency	Scope of Accreditation	Logo
USA	USA A2LA CFR 47, FCC Part 15/18; AS/NZS 3548; VCCI V3; CNS 13438; CNS 13439; CNS 13783; CNS 14115; CISPR 11/EN 55011; CISPR 14-1/EN 55014-1; CISPR 15/EN 55015; CISPR 22/EN 55022; EN 50081-1/EN 61000-6-3; EN 50082-1/EN 61000-6-4; IEC/EN 61000-4-2, IEC/EN 61000-4-3, IEC/EN 61000-4-4, IEC/EN 61000-4-5, IEC/EN 61000-4-6, IEC/EN 61000-4-8, IEC/EN 61000-4-11, IEC/EN 61000-3-2, IEC/EN 61000-3-3; CISPR 24/EN 55024; CISPR 14-2/EN 55014-2; EN 50081-2/EN 61000-6-1; EN 50082-2/EN 61000-6-2.		ACCREDITED No. 0824-01
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 250366
Japan	VCCI	3/10 meter Open Area Test Sites and Line Conducted Test Room to perform conducted/radiated measurements	VCCI R-1434/1630~4 C-1511/1882
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, Cispr 16-1/2/3/4	ELA 103
Taiwan	47 CFR FCC Part 15 Subpart B, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 13438, AS/NZS 3548, VCCI, CNS 13022-1/2/3, EN 55022, EN 55013, EN 55014-1, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, ENV 50141, ENV 50142		Tending Laboratory 1108
Taiwan BSMI CNS 13438, CNS 13783-1, CNS 13439		SL2-IN-E-0005 SL2-A1-E-0005 SL2-R1-E-0005 SL2-R2-E-0005 SL2-R2-E-0005 SL2-R1-F-0008	
Canada	Industry Canada	RSS212, Issue 1	Canada IC 5742

Note: No part of this report may be used to claim or imply product endorsement by CNLA, A2LA or other government agency.

Page 7 Rev. 00

6 INSTRUMENT AND CALIBRATION

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Date of Issue: June 20, 2007

6.2 TEST AND MEASUREMENT EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and other required standards. Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective manual.

Equipment Used for Emission Measurement

Open Area Test Site # J					
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE	
SITE NSA	CCS	J Site	N/A	10/14/2007	
MEASURE RECEIVER	SCHAFFNER	SCR3501	330	06/11/2007	
SPECTRUM ANALYZER	ADVANTEST	R3132	120900003	No Calibration Required	
ANTENNA	SCHAFFNER	CBL 6112B	2800	09/23/2007	
PRE- AMPLIFIER	SCHAFFNER	CPA9231A	3629	10/10/2007	
CABLE	BELDEN	9913	N-TYPE #J3	08/24/2007	
ATTENUATOR	MCL	UNAT-6	AT06-8	12/03/2007	
THERMO- HYGRO METER	TFA	N/A	NO.3	10/26/2007	
Test S/W	Lab VIEW 5.1				

Note: The measurement uncertainty is less than $\pm 3.9493dB$ (30MHz ~ 200MHz) and $\pm 3.9539dB$ (200MHz ~ 1000MHz), which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Conducted Emission Test Site # B					
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE	
TEST RECEIVER	R&S	ESHS10	843743/015	03/28/2008	
LISN (EUT)	EMCO	3825/2	9106-1810	01/03/2008	
LISN	EMCO	3825/2	1382	01/03/2008	
BNC CABLE	MIYAZAKI	5D-FB	BNC B1	07/13/2007	
Pulse Limiter	R&S	ESH3-Z2	100374	08/24/2007	
THERMO- HYGRO METER	ТОР	HA-202	9303-3	02/04/2008	
Test S/W	EMI 32.exe				

Note: The measurement uncertainty is less than $\pm 2.0351dB$, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 8 Rev. 00

Power Harmonic & Voltage Fluctuation/Flicker Test Site (EN 61000-3-2&-3-3) Manufacturer/Type Model No. Serial No. Cal. Due Schaffner / Signal CCN 1000-1 72122 11/23/2007 Conditioning Unit Schaffner / 5KVA AC No Calibration NSG 1007 55131 **Power Source** Required Protronix / 1201 08/29/2007 201091 Digital Power Meter Win2100V3.exe Software

Date of Issue: June 20, 2007

Equipment Used for Immunity Measurement

ESD Test Site (EN 61000-4-2)					
Manufacturer/Type Model No. Serial No. Cal. Due					
Schaffner / ESD Simulator	NSG 438	129	04/24/2008		
Sato / Aneroid Barometer	7610-20	89090	09/03/2007		
TOP / Thermo-Hygro meter	HA-202	9303-1	02/04/2008		

Radiated Electromagnetic Field Immunity Test Site (EN 61000-4-3) Below 1GHz				
Manufacturer/Type	Model No.	Serial No.	Cal. Due	
Calibration of Field	Chamber#RS	200604H/V-2	06/23/2007	
Agilent / Signal Generator	E4421B	MY43350597	05/15/2008	
AR / Electric Field Probe	FP6001	305650	04/09/2008	
Boonton / RF Voltmeter	9200B	328001AE	02/04/2008	
BNC / Function Generator	625A	25451	02/01/2008	
AR / Amplifier	100W1000M1	17564	No Calibration Required	
AR / Direction Coupler	DC6180A	312189	No Calibration Required	
AR / Broadband Antenna	AT1080	311819	No Calibration Required	
TFA / Thermo-Hygro meter	N/A	NO.6	10/26/2007	
Software	SW1005 Relrase 1.4.exe			

Page 9 Rev. 00

Radiated Electromagnetic Field Immunity Test Site (EN 61000-4-3) Above 1GHz Manufacturer/Type Model No. Serial No. Cal. Due 8648C 4108A05772 10/23/2007 Agilent / Signal Generator Amplifier Research / 150 150W1000M3 306730 N.C.R. Watts 80-1000MHz Amplifier Amplifier Research / 30 Watts 30S1G3M1 306722 N.C.R. 0.8-3.0GHz Amplifier Boonton / Power Meter 4232A-01-02 98601 10/25/2007 Boonton / Power Sensor 51011-EMC 32920 10/25/2007 Boonton / Power Sensor 51011-EMC 32863 10/25/2007 Amplifier Research / AT1080 306709 N.C.R. Log-Periodic Antenna Amplifier Research / AT4002A 306750 N.C.R. Microwave Horn Antenna AMREL / 6 MHz SC1000M3 306666 N.C.R. Sweep/Function Generator Amplifier Research / RF Test FP6001 305657 05/25/2008 System Controller Amplifier Research / Field DC7144A N/A N.C.R. Probe Amplifier Research / DC6180A N/A N.C.R. 0.8-4.2GHz Amplifier Research / TP2000 N/A N.C.R. 80-1000MHz Amplifier Research / Antenna PS2000 N/A N.C.R. Amplifier Research / Probe 8648C 4108A05772 10/23/2007 Stand Software SW1005 (Release 1.4)

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

Fast Transients/Burst Test Site (EN 61000-4-4)						
Manufacturer/Type	Model No.	Serial No.	Cal. Due			
Schaffner / EFT Generator	BEST EMC V2.3	200031A024SC	11/05/2007			
Schaffner / Capacitive Clamp	N/A	N/A	No Calibration Required			
Software	WinBest.exe					

Surge Immunity Test Site (EN 61000-4-5)						
Manufacturer/Type Model No. Serial No. Cal. Due						
Schaffner / Surger Generator	BEST EMC V2.3	200031A024SC	11/05/2007			
Schaffner / Signal and Data Lines Coupling Network	CDN118	19328	No Calibration Required			
Software	WinBest.exe					

Page 10 Rev. 00

Date of Issue: June 20, 2007

CS test (EN 61000-4-6) Manufacturer/Type Model No. Serial No. Cal. Due Schaffner / NSG 2070-1 1061 08/01/2007 RF Generator Schaffner / CDN 19600 08/01/2007 CDN M316 Schaffner / CDN 19294 08/01/2007 CDN M216 FCC / CDN 99122 FCC-801-M3-16A 08/31/2007 Schaffner / EM Clamp **KEMZ 801** 19227 03/04/2008 Schaffner / CDN CDN T002 01/10/2008 15881 FCC / CDN 04025 FCC-801-T8-RJ45 07/03/2007 No Calibration Schaffner / Attenuator INA2070-1 2061 Required FCC / CDN FCC-801-T4-RJ45 04031 08/01/2007 Software Win2070.exe

Date of Issue: June 20, 2007

Power Frequency Magnetic Field Immunity test (EN 61000-4-8)						
Manufacturer/Type	Model No.	Serial No.	Cal. Due			
Schaffner / Induction Coil Interface	INA 21141	6009	No Calibration Required			
Schaffner / 5KVA AC Power Source	NSG 1007	55131	No Calibration Required			
CHY/ TRMS Clamp Meter	932C	2K0900285	10/13/2007			
Sypris / Magnetic Field Meter	4080	0247	02/26/2008			

Voltage Dips/Short Interruption and Voltage Variation Immunity test (EN 61000-4-11)						
Manufacturer/Type	Model No.	Serial No.	Cal. Due			
Schaffner / Dips/Interruption/Variations Tester	BEST EMC V2.3	200031A024SC	11/05/2007			
Protronix / Digital Power Meter	1201	201091	08/29/2007			
Software	WinBest.exe					

Page 11 Rev. 00

LINE CONDUCTED & RADIATED EMISSION TEST

7.1 LIMIT

Maximum permissible level of Line Conducted Emission

Frequency	Class A	(dBµV)	Class B (dBµV)		
(MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Date of Issue: June 20, 2007

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 10 meter

Frequency	Class A (dBµV/m)	Class B (dBµV/m)
(MHZ)	Quasi-peak	Quasi-peak
30 – 230	40	30
230 - 1000	47	37

Note: The lower limit shall apply at the transition frequency.

Page 12 Rev. 00

7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION

Procedure of Preliminary Test

• The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Date of Issue: June 20, 2007

- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical actual usage as per EN 55011.
- The test equipment EUT installed received AC power, 230VAC/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.
- The test data of the worst-case condition(s) was recorded.

Page 13 Rev. 00

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	56	-12.50	Q	L1

Date of Issue: June 20, 2007

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading Factor = Insertion loss of LISN + Cable Loss

Level = Read Level + Factor
Limit = Limit stated in standard
Over Limit = Reading in reference to limit

P = Peak Reading

Q = Quasi-peak Reading A = Average Reading

L1 = Hot side L2 = Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) – Limit (dBuV)

Page 14 Rev. 00

7.3 TEST PROCEDURE OF RADIATED EMISSION

Procedure of Preliminary Test

• The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is floor-standing equipment, it is placed on the ground plane that has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Date of Issue: June 20, 2007

- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical usage as per EN 55011.
- The EUT received AC power source, 230VAC/50Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

Page 15 Rev. 00

Date of Issue: June 20, 2007

Data Sample:

Freq. MHz	Amptd dBuV/m	Margin dB	Limit dBuV/m	Reading dBuV	Factor dB/m	Reading Type (P/Q/A)	Pol. (H/V)
X.XX	26.2	-3.8	30	14	12.2	Q	Н

= Emission frequency in MHz Freq.

Reading = Uncorrected Analyzer/Receiver reading

Factor = Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain

Amptd = Uncorrected Analyzer/Receiver reading + Factor

= Limit stated in standard Limit = Reading in reference to limit Margin

= Peak Reading P

Q = Quasi-peak Reading = Average Reading A

= Antenna Polarization: Horizontal Н V = Antenna Polarization: Vertical

Calculation Formula

Margin (dB) = Amptd (dBuV/m) – Limit (dBuV/m)

Page 16 Rev. 00

7.4 TEST RESULTS

Line Conducted Emission

Model: ONYX-150 Test Mode: Mode 1

Date of Issue: June 20, 2007

Temperature: 27°C **Humidity:** 65% RH

Test Results: Passed **Tested by:** Alee Shen

(The chart below shows the highest readings taken from the final data.)

Six Highest Conducted Emission Readings							
Frequency	Range Inve	estigated			150 kHz t	o 30 MHz	
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)
0.308	40.34	9.86	50.20	60.02	-9.82	P	L1
0.308	19.81	9.86	29.67	50.02	-20.35	A	L1
0.379	40.73	9.86	50.59	58.30	-7.71	P	L1
0.379	14.11	9.86	23.97	48.30	-24.33	A	L1
0.595	42.71	9.87	52.58	56.00	-3.42	P	L1
0.595	15.91	9.87	25.77	46.00	-20.23	A	L1
0.343	37.70	9.88	47.58	59.13	-11.55	P	L2
0.598	38.45	9.87	48.32	56.00	-7.68	P	L2
0.598	12.17	9.87	22.04	46.00	-23.96	A	L2
1.868	33.67	9.90	43.57	56.00	-12.43	P	L2

NOTE: Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.

Page 17 Rev. 00

Radiated Emission

Model: ONYX-150 **Test Mode:** Mode 1

Temperature: 21°C **Humidity:** 71% RH

Test Results: Passed **Tested by:** John Yen

(The chart below shows the highest readings taken from the final data.)

	Six Highest Radiated Emission Readings						
Frequency	Range Inve	estigated		30	MHz to 100	00 MHz at 1	0m
Freq (MHz)	Amptd (dBuV/m	Margin (dB)	Limit (dBuV/m)	Reading (dBuV)	Factor (dB/m)	Reading Type (P/Q/A)	Pol. (H/V)
136.3690	25.76	-4.24	30.00	35.56	-9.80	Q	V
166.4240	24.05	-5.95	30.00	34.91	-10.86	Q	V
600.2020	30.90	-6.10	37.00	29.23	1.67	Q	V
359.6060	30.88	-6.12	37.00	35.61	-4.73	Q	Н
479.6070	30.89	-6.11	37.00	32.09	-1.20	Q	Н
720.4460	31.96	-5.04	37.00	28.91	3.05	Q	Н

NOTE: None.

Page 18 Rev. 00

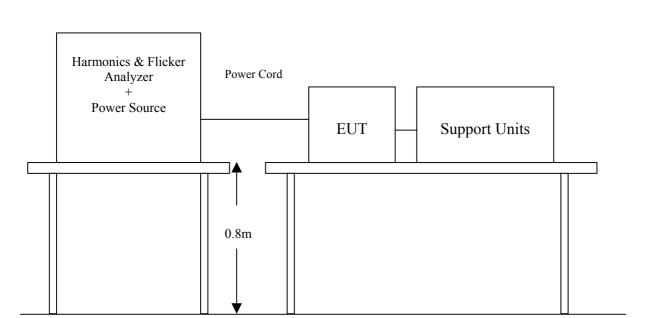
Date of Issue: June 20, 2007

7 POWER HARMONICS TEST

Port : AC Power Port

Basic Standard : EN 61000-3-2 (2000)

Limits : ☐ CLASS A; ☐ CLASS B; ☐ CLASS C; ☐ CLASS D


Date of Issue: June 20, 2007

 $\begin{tabular}{lll} \textbf{Tested by} & : & N/A \\ \textbf{Temperature} & : & N/A \\ \textbf{Humidity} & : & N/A \\ \end{tabular}$

Limit:

Limits for	Class A equipment		Limits for Class D equipment			
Harmonics Order n	Max. permissible harmonics current	Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics curren		
Od	d harmonics		Odd Harmonics only	y		
3	2.30	3	3.4	2.30		
5	1.14	5	1.9	1.14		
7	0.77	7	1.0	0.77		
9	0.40	9	0.5	0.40		
11	0.33	11	0.35	0.33		
13	0.21	13	0.30	0.21		
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n		
Eve	en harmonics					
2	1.08					
4	0.43					
6	0.30					
8<=n<=40	0.23x8/n					

Page 19 Rev. 00

Date of Issue: June 20, 2007

Block Diagram of Test Setup:

Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

Test Result:

☐ PASS	☐ FAIL
Note: According to clause 7 of EN 61000-75W or less, no limits apply. The test result	, 1 1

Page 20 Rev. 00

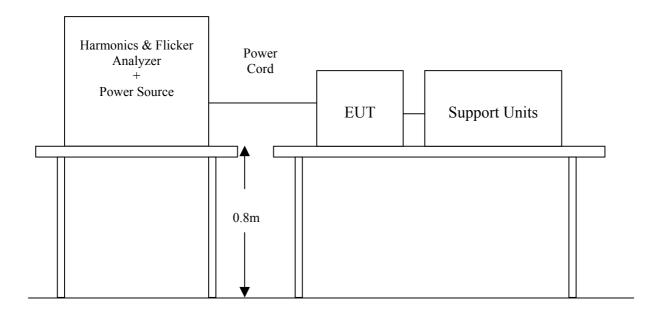
8 POWER VOLTAGE FLUCTUATION / FLICKER TEST

Date of Issue: June 20, 2007

Port : AC Power Port

Basic Standard : EN 61000-3-3 (1995 + A1: 2001)

Limits : §5 of EN 61000-3-3


Tested by : Webber Chung

Temperature : 18°C **Humidity** : 55%

Limit:

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

Block Diagram of Test Setup:

Page 21 Rev. 00

Test Procedure:

a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

Date of Issue: June 20, 2007

Test Result: (See Appendix II for details)

Test Parameter	Measurement Value	Limit	Result
P_{st}	0.223	1.0	Pass
P _{lt}	0.140	0.65	Pass
T _{dt} (ms)	0.0	500	Pass
d _{max} (%)	0.00	4%	Pass
dc (%)	0.00	3.3%	Pass

Note: None.

Page 22 Rev. 00

9 ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port : Enclosure

Basic Standard: IEC/EN 61000-4-2

Test Level : ± 2 , 4, 8 kV (Air Discharge)

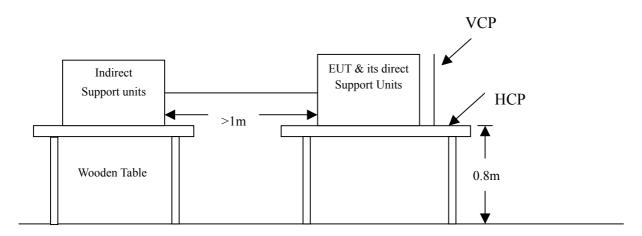
±2, 4, 6 kV (Contact Discharge)

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: June 20, 2007

Tested by : Jason Lee


Temperature : 18°C

Humidity : 55% RH

Pressure : 1011mbar

Block Diagram of Test Setup:

(The 470 k Ω resistors are installed per standard requirement.)

Ground Reference Plane

Page 23 Rev. 00

Test Procedure:

The electrostatic discharges were applied as follows:

Amount of Discharges	Voltage	Coupling	Result (Pass/Fail)
≥20 / Point	± 2, 4, 8 kV	Air Discharge	Pass
≥20 / Point	± 2, 4, 6 kV	Contact Discharge	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge HCP	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Front)	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Left)	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Back)	Pass
≥20 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Right)	Pass

Date of Issue: June 20, 2007

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 24 Rev. 00

The Tested Points of EUT

Photo 1 of 3

Photo 2 of 3

Page 25 Rev. 00

Date of Issue: June 20, 2007

Photo 3 of 3

Page 26 Rev. 00

10 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

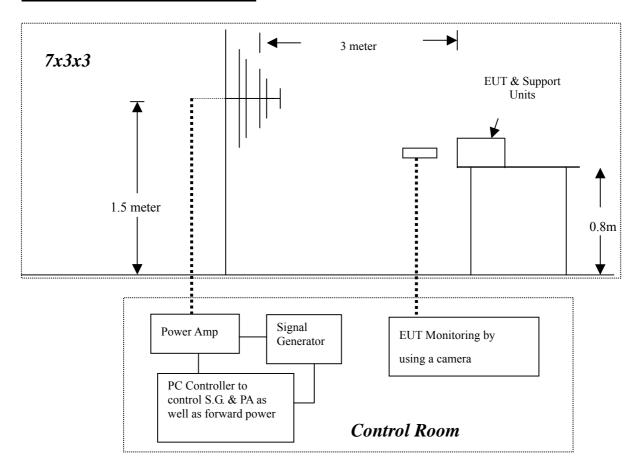
Basic Standard: IEC/EN 61000-4-3

Requirements : 3 V/m with 80% AM, 1kHz Modulation.

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: June 20, 2007


Tested by : Webber Chung

Temperature : 19°C

Humidity : 59% RH

Pressure: 1009mbar

Block Diagram of Test Setup:

Page 27 Rev. 00

Test Procedure:

Frequency Range $80 \text{MHz} \sim 2500 \text{MHz}$ Steps : 1 % of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Polarity	Position	Result (Pass/Fail)
80-2500	3V/m	Yes	Н	0	Pass
80-2500	3V/m	Yes	V	0	Pass
80-2500	3V/m	Yes	Н	90	Pass
80-2500	3V/m	Yes	V	90	Pass
80-2500	3V/m	Yes	Н	180	Pass
80-2500	3V/m	Yes	V	180	Pass
80-2500	3V/m	Yes	Н	270	Pass
80-2500	3V/m	Yes	V	270	Pass

Date of Issue: June 20, 2007

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 28 Rev. 00

11 FAST TRANSIENTS/BURST IMMUNITY TEST

Port : AC Power Port and RJ45 Port

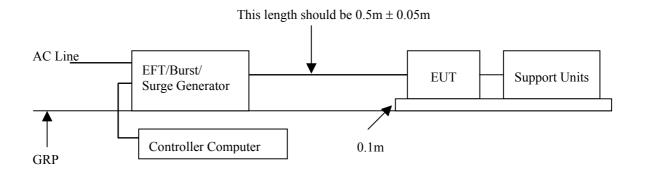
Basic Standard: IEC/EN 61000-4-4

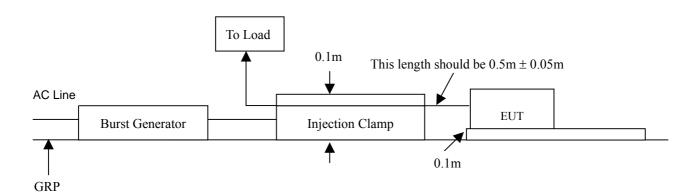
Requirements : $\pm 2 \text{ kV for AC Power Port}$

 \pm 0.5kV for RJ45 Port

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.


Date of Issue: June 20, 2007


Tested by : Webber Chung

Temperature : 18°C **Humidity** : 58%

Pressure: 1008mbar

Block Diagram of Test Setup:

Page 29 Rev. 00

Test Procedure:

Impulse Frequency: 5kHz
Tr/Th: 5/50ns
Burst Duration: 15ms
Burst Period: 300ms

Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)
L	± 2	Direct	Pass
N	± 2	Direct	Pass
PE	± 2	Direct	Pass
L + N	± 2	Direct	Pass
L + PE	± 2	Direct	Pass
N + PE	± 2	Direct	Pass
L + N + PE	± 2	Direct	Pass
RJ45	± 0.5	Clamp	Pass

Date of Issue: June 20, 2007

Observation: As \pm 2 kV applied on L, N, PE, L + N, L + PE, N + PE, and L + N + PE of AC power port, the data transmitting is interrupted during test, but recover automatically afterwards.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 30 Rev. 00

12 SURGE IMMUNITY TEST

Port : AC Power Port

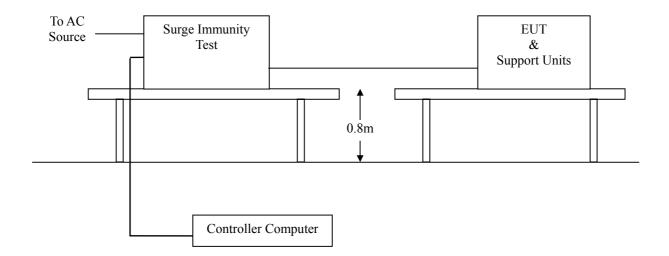
Basic Standard: IEC/EN 61000-4-5

Requirements : $\pm 1 \text{ kV}$ (Line to Line) for AC Power Port

± 2 kV (Line(s) to Ground) for AC Power Port

Date of Issue: June 20, 2007

Performance Criteria: The Equipment or System shall be able to provide the


essential performance and remain safe.

Tested by : Webber Chung

Temperature : 18°C **Humidity** : 58%

Pressure: 1008mbar

Block Diagram of Test Setup:

Page 31 Rev. 00

Test Procedure:

Voltage Waveform : $1.2/50 \mu s$ Current Waveform : $8/20 \mu s$

Polarity : Positive/Negative Phase angle : 0°, 90°, 180°, 270°, 359°

Number of Test : 5

Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2	1	Positive	Capacitive	Pass
L1-PE	2	Positive	Capacitive	Pass
L2-PE	2	Positive	Capacitive	Pass
L1-L2	1	Negative	Capacitive	Pass
L1-PE	2	Negative	Capacitive	Pass
L2-PE	2	Negative	Capacitive	Pass

Date of Issue: June 20, 2007

Observation: Where normal functioning of LAN can't be achieved because of the impact of CDN on the EUT, no test be required.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 32 Rev. 00

13 CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST

Port : AC Power Port and RJ45 Port

Basic Standard: IEC/EN 61000-4-6

Requirements : 3 V with 80% AM, 1kHz Modulation.

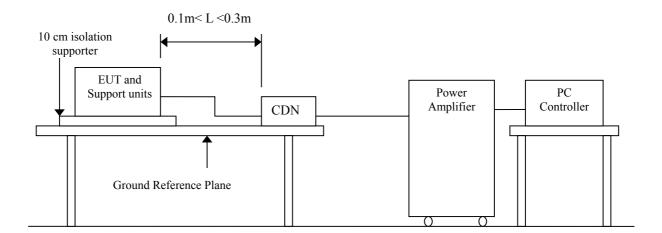
Injection Method : CDN-M3 for AC Power Port

CDN-T4 for RJ45 Port

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: June 20, 2007


Tested by : Webber Chung

Temperature : 19°C

Humidity : 59%

Pressure: 1009mbar

Block Diagram of Test Setup:

Page 33 Rev. 00

Test Procedure:

Frequency Range : 0.15MHz-80MHz Frequency Step : 1% of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	3V	Yes	Pass

Date of Issue: June 20, 2007

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 34 Rev. 00

14 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

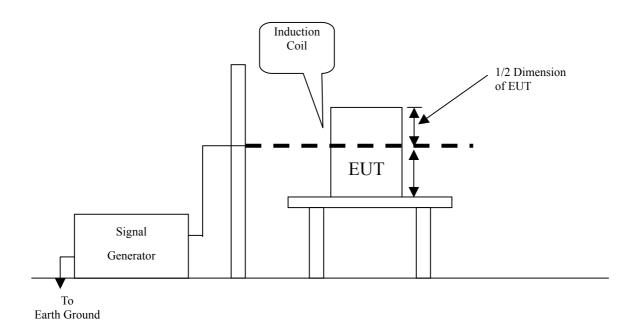
Basic Standard: IEC/EN 61000-4-8

Requirements : 3 A/m, 50/60Hz

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: June 20, 2007


Tested by : Webber Chung

Temperature : 18°C

Humidity : 58% RH

Pressure : 1008mbar

Block Diagram of Test Setup:

Page 35 Rev. 00

Test Procedure:

Field Strength: 3A/m

Power Freq. : 50Hz; 60Hz Orientation : X, Y, Z

Orientation	Field	Result	Remark
X	30A/m, 50Hz	Pass	No any function degraded during the tests.
Y	30A/m, 50Hz	Pass	No any function degraded during the tests.
Z	30A/m, 50Hz	Pass	No any function degraded during the tests.
X	30A/m, 60Hz	Pass	No any function degraded during the tests.
Y	30A/m, 60Hz	Pass	No any function degraded during the tests.
Z	30A/m, 60Hz	Pass	No any function degraded during the tests.

Date of Issue: June 20, 2007

Observation: No function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 36 Rev. 00

15 VOLTAGE DIPS / SHORT INTERRUPTIONS

Port : AC Power Port

Basic Standard: IEC/EN 61000-4-11

Requirement : PHASE ANGLE 0°, 180°

	Test Level % U _T	Reduction (%)	Duration (periods)
Voltage Dips	<5	>95	0.5
	40	60	5
	70	30	25

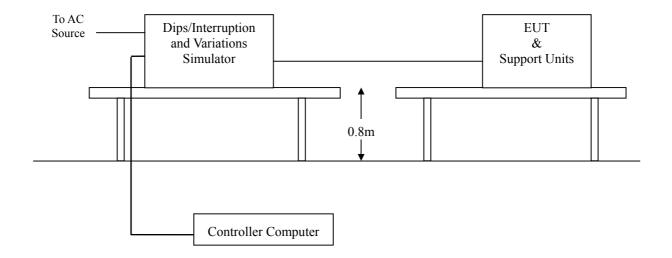
Date of Issue: June 20, 2007

Voltage Interruptions	Test Level % U _T	Reduction (%)	Duration (second)
	<5	>95	5

Test Interval : Min. 10 sec.

Performance Criteria: The Equipment or System shall be able to provide the

essential performance and remain safe.


Tested by : Webber Chung

Temperature : 18°C

Humidity : 58%

Pressure : 1008mbar

Block Diagram of Test Setup:

Page 37 Rev. 00

Test Procedure:

The duration with a sequence of three dips/interruptions with interval of 10 s minimums (Between each test event)

Date of Issue: June 20, 2007

Voltage Dips:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Result
0	100	0.5	Normal	A
40	60	5	Normal	A
70	30	25	Normal	A

Voltage Interruptions:

Test Level % U _T	Reduction (%)	Duration (second)	Observation	Result
0	100	5	EUT shut down, but EUT can be auto recovered after it restart.	С

Note:

- 1. Normal No any functions degrade during and after the test.
- 2. For Voltage Interruption, EQUIPMENT and SYSTEMS are allowed a deviation from the requirements of 36.202.1) at the IMMUNITY TEST LEVEL specified in Table 211, provided the EQUIPMENT or SYSTEM remains safe, experiences no component failures and is restorable to the pre-test state with OPERATOR intervention. Determination of compliance is based upon performance of the EQUIPMENT or SYSTEM during and after application of the test sequence.

Observation: No function degraded during the tests.

Page 38 Rev. 00

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

Date of Issue: June 20, 2007

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

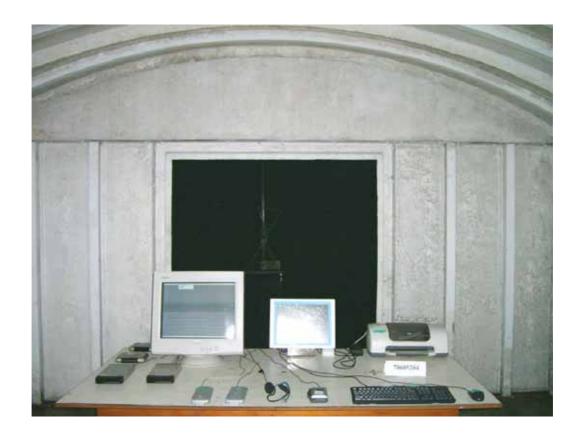
For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 39 Rev. 00

Date of Issue: June 20, 2007

APPENDIX I - PHOTOGRAPHS OF TEST SETUP


LINE CONDUCTED EMISSION TEST (EN 55011)

Page 40 Rev. 00

RADIATED EMISSION TEST (EN 55011)

Page 41 Rev. 00

POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST

Page 42 Rev. 00

ELECTROSTATIC DISCHARGE TEST

RADIATED ELECTROMAGNETIC FIELD TEST

Page 43 Rev. 00

FAST TRANSIENTS/BURST TEST

(IEC 61000-4-4 FOR I/O)

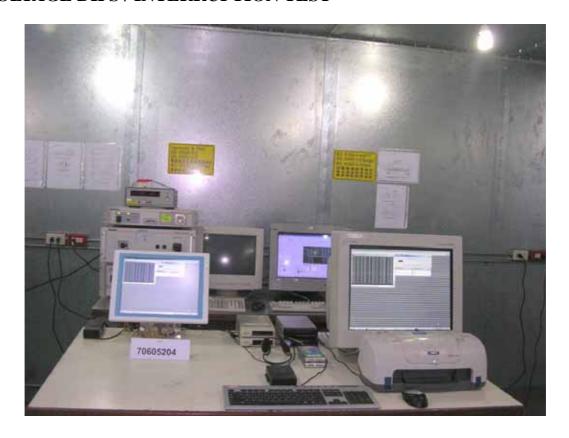
Page 44 Rev. 00

SURGE IMMUNITY TEST

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST

Page 45 Rev. 00

(IEC 61000-4-6 FOR I/O)

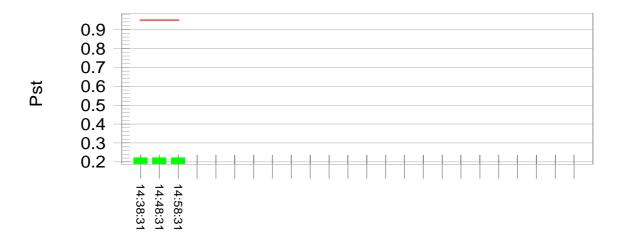

POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Rev. 00 Page 46

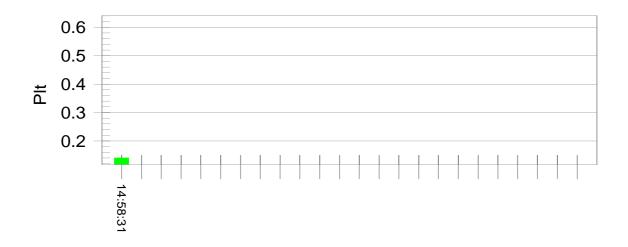
Date of Issue: June 20, 2007

VOLTAGE DIPS / INTERRUPTION TEST

Page 47 Rev. 00


APPENDIX II - TEST RESULT OF EN 61000-3-3

Test Result: Pass Status: Test Completed


Pst_i and limit line

European Limits

Date of Issue: June 20, 2007

Plt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 229 82

vrms at the end of test (volt):	229.82			
Highest dt (%):	0.00	Test limit (%):	3.14	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.14	Pass
Highest dmax (%):	0.00	Test limit (%):	3.80	Pass
Highest Pst (10 min. period):	0.223	Test limit:	0.950	Pass
Highest Plt (2 hr. period):	0.140	Test limit:	0.617	Pass

Page 48 Rev. 00