CE EMC TEST REPORT

for

Industrial Motherboard MODEL: IMBA-H61A xxxxxxxxxxxx ; LAH61A xxxxxxxxxxx

Report No.: T130131D01-E

(Where x is 0-9, A-Z, - or blank)

Test Report Number: T130131D01-E

Issued to:

AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd, Hsin-Tien Dist., New Taipei City, Taiwan, R.O.C.

Issued by:

Compliance Certification Services Inc.

Xindian Lab.

No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan. TEL: 886-2-22170894

FAX: 886-2-221710394

Issued Date: February 08, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Report No.: T130131D01-E

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 08, 2013	Initial Issue	ALL	Joy Hsiao

TABLE OF CONTENTS

Report No.: T130131D01-E

1		TEST CERTIFICATION	4
2		TEST RESULT SUMMARY	
3		EUT DESCRIPTION	
4		TEST METHODOLOGY	
-	4.1.	DECISION OF FINAL TEST MODE	
		EUT SYSTEM OPERATION	
5		SETUP OF EQUIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF SUPPORT UNITS	8
	5.2.	CONFIGURATION OF SYSTEM UNDER TEST	9
6		FACILITIES AND ACCREDITATIONS	10
		FACILITIES	
		ACCREDITATIONS	
	6.3.	MEASUREMENT UNCERTAINTY	10
7		EMISSION TEST	
	7.1.	CONDUCTED EMISSION MEASUREMENT	11
		CONDUCTED EMISSION MEASUREMENT AT TELECOMMUNICATION PORTS	
	_	RADIATED EMISSION MEASUREMENT	_
		HARMONICS CURRENT MEASUREMENT	
		VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	
8		IMMUNITY TEST	
	8.1.	GENERAL DESCRIPTION	36
		GENERAL PERFORMANCE CRITERIA DESCRIPTION	
		ELECTROSTATIC DISCHARGE (ESD)	
	8.4.	RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	42
		ELECTRICAL FAST TRANSIENT (EFT)	
		SURGE IMMUNITY TEST	
		CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	
		POWER FREQUENCY MAGNETIC FIELDVOLTAGE DIPS & VOLTAGE INTERRUPTIONS	
9	0.9.	PHOTOGRAPHS OF THE TEST CONFIGURATION	
_			
Δ	PPF	NDIX 1 - PHOTOGRAPHS OF FUT	1_1 [

1 TEST CERTIFICATION

Product: Industrial Motherboard

Model: IMBA-H61A xxxxxxxxxxx; LAH61A xxxxxxxxxxx

(Where x is 0-9, A-Z, - or blank)

Brand: AAEON; ASUS

Applicant: AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd, Hsin-Tien Dist.,

New Taipei City, Taiwan, R.O.C.

Manufacturer: 1. AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd, Hsin-Tien Dist.,

New Taipei City, Taiwan, R.O.C.

2. INFO-TEK ELECTRONICS(SUZHOU)CO., LTD

183 Jinfeng Rd., Suzhou, Jiangsu, PRC

3. Cal-Comp Electronics and Communications (Suzhou) Co., Ltd

Wujiang Export Processing Zone, No 688, Pangjin Road,

Wujiang Economic Development Zone, Jiangsu Province, China.

4. Danriver Technology (Guangzhou) Inc.

No. 16 Baoying Dadao, Guangzhou Free Trade Zone.

People's Republic of China

5. BOATEK ELECTRONIC CO., LTD.

No. 124 bubugao road, wu sha kong bavillage, chang an,

dong guan, guang dong province

6. Global Brands Manufacture (Dongguan) Ltd

Yue Yuen Industrial Estate, Huang Jiang Town Dong Guan City,

Guang Dong Province

Tested: January 31, 2013 & February 05, 2013

Applicable EN 55022: 2010, Class A EN 55024: 2010 Standards: CISPR 22: 2008 (Ed 6.0)

EN 61000-3-2: 2006 + A1: 2009 + A2: 2009 IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010

EN 61000-3-3: 2008 IEC 61000-4-4: 2004 + A1: 2010

IEC 61000-4-5: 2005 IEC 61000-4-6: 2008 IEC 61000-4-8: 2009 IEC 61000-4-11: 2004

Report No.: T130131D01-E

Deviation from Applicable Standard

None

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements of technical standards specified above under the EMC Directive 2004/108/EC. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:	Reviewed by:	
Samlh	Zen Jan for.	
Sam Hu Section Manager	Vesta Hsu Supervisor of report document dept.	

TEST RESULT SUMMARY

EMISSION					
Standard	ltem	Result	Remarks		
	Conducted (Power Port)	PASS	Meet Class A limit		
EN 55022: 2010 CISPR 22: 2008 (Ed 6.0)	Conducted (Telecom port)	PASS	Meet Class A limit		
	Radiated	PASS	Meet Class A limit		
EN 61000-3-2: 2006 + A1: 2009 + A2: 2009	Harmonic current emissions	PASS	Meet Class D limit		
EN 61000-3-3: 2008	Voltage fluctuations & flicker	PASS	Meets the requirements		

Report No.: T130131D01-E

IMMUNITY [EN 55024 (2010)]						
Standard Item Result			Remarks			
IEC 61000-4-2: 2008	ESD	PASS	Meets the requirements of Performance Criterion B			
IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010	RS	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-4: 2004 + A1: 2010	EFT	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-5: 2005	Surge	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-6: 2008	CS	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-8: 2009	PFMF	N/A	Please see the page 53			
IEC 61000-4-11: 2004	Voltage dips & voltage variations	PASS	Meets the requirements of Voltage Dips: 1) >95% reduction Performance Criterion A 2) 30% reduction Performance Criterion A Voltage Interruptions: 1) >95% reduction Performance Criterion C			

- Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.
 - 2. The information of measurement uncertainty is available upon the customer's request.

3 EUT DESCRIPTION

Product	Industrial Motherboard
Brand Name	AAEON; ASUS
Model	IMBA-H61A xxxxxxxxxx; LAH61A xxxxxxxxxx (Where x is 0-9, A-Z, - or blank)
Applicant	AAEON Technology Inc.
Housing material	N/A
Identify Number	T130131D01
Received Date	January 31, 2013
EUT Power Rating	3.3VDC/ ±5VDC / ±12VDC/ 5VSB from Host PC Power Supply
AC Power During Test	230VAC / 50Hz to Host PC Power Supply
OSC/Clock Frequencies	25MHz; 27MHz; 32.768kHz

Report No.: T130131D01-E

Model Differences

Model Name	Brand	Differences	Tested (Check)
IMBA-H61A-A10	AAEON	Original	\boxtimes
IMBA-H61A xxxxxxxxxx	AALON	For marketing purpose only. Where x is 0-9 , A-Z , - or blank	
LAH61A xxxxxxxxxx	ASUS		

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH
1. PIO Port	1	1
2. SIO Port	7	7
3. PS/2 Mouse Port	1	1
4. PS/2 Keyboard Port	1	1
5. VGA Port	1	1
6. DVI Port	1	1
7. Audio In Port	1	1
8. Earphone Port	1	1
9. Microphone Port	1	1
10. USB Port	8	8
11. LAN Port	2	2
12. DIO Port	1	1

Note: Client consigns only one model sample to test (Model Number is IMBA-H61A-A10).

4 TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

Report No.: T130131D01-E

The test configuration/ modes are as the following:

Conduction Mode (Power port):

Conduction Modes (Telecom port):

1		10Mbps
2	LAN 1	100Mbps
3		1Gbps
4	LAN 2	1Gbps

Radiation Mode:

-	1920X1080, VF=60Hz / VGA + DVI MODE		
•	1920X1080, VF=60Hz / VGA + DVI MODE / 1-6GHz		

Conduction (Power port): Mode 1 Conduction (Telecom port): Mode 3

Radiation: Mode 1

4.2. EUT SYSTEM OPERATION

- 1. Windows 7 boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.
- 3. Run Winemc.exe and choose media player to play music.
- 4. Run Winemc.exe then choose "E:/ & F:/ & G: / & H:/ & I:/ & J:/ & K:/ & L:/" to test USB 2.0 port.
- 5. Press the start menu, select executive and type ping 192.168.0.2&3–t (EUT), ping 192.168.0.1–t (Server PC).

Note: Test program is self-repeating throughout the test.

5 SETUP OF EQUIPMENT UNDER TEST

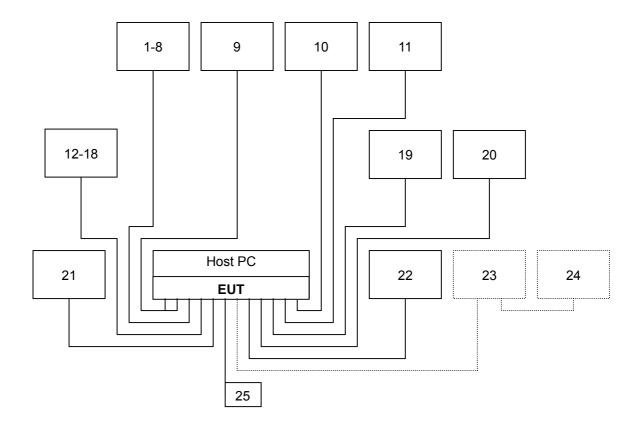
5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: T130131D01-E

Host PC Devices:

No.	Equipment	Model No.	Brand Name
1	CPU (3.5GHz)	I7-3370K	INTEL
2	HDD (320GB)	WD3200BEVT	WD
3	Memory (DDR3-1333 / 4GB X2)	N/A	Panram
4	Power Supply (500Watt t)	ULTRA 500	CyberSLIM


Peripherals Devices:

No.	Equipment	Model No.	Serial No.	FCC ID / BSMI ID	Brand Name	Data Cable	Power Cord
1-8	USB 2.0 HDD	F12-U	N/A	BSMI ID: 4912A002	TeraSys	Shielded, 1.8m	N/A
9	Earphone & Microphone	SEP912	N/A	N/A	Atayal	Unshielded, 1.8m	N/A
10	PS/2 Mouse	M-SBF69	HCA54301042	DOC BSMI: R41126	Logitech	Shielded, 1.8m	N/A
11	PS/2 Keyboard	Y-SJ17	867247-0121	DOC BSMI: T51160	Logitech	Shielded, 1.8m	N/A
12-13	Modem	AL-56ERM	N/A	DOC	GALILEO	Shielded, 1.2m	Unshielded, 1.5m with a core
14-18	Modem	AL-56ERM	N/A	DOC	GALILEO	Shielded, 0.8m	Unshielded, 1.5m with a core
19	Player	RQ-L12LT	N/A	BSMI ID: 3912A162	Panasonic	Unshielded, 1.2m	N/A
20	Printer	C20SX	EW4E126644	BSMI ID: 3902E004	EPSON	Shielded, 1.8m	Unshielded, 1.8m
21	Monitor	B2230H	NEBKHMAZ8000 18E	DOC BSMI: R33475	Samsung	Shielded, 1.8m with two cores	Unshielded, 1.8m
22	Monitor	U2711b	N/A	DOC BSMI: R33002	DELL	Shielded, 1.8m with two cores	Unshielded, 1.8m
23	HUB	DGS-1008D	N/A	N/A	D-Link	Unshielded, 20m X2	Unshielded, 1.8m
24	Server PC	T3500	8X36VBX	DOC BSMI: R33002	DELL	Unshielded, 1.0m	Unshielded, 1.8m
25	DIO to RS232 Cable	N/A	N/A	N/A	N/A	Unshielded, 1.8m	N/A

Note:

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

Report No.: T130131D01-E

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCSrf Taiwan Xindian Lab. at No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan.

Report No.: T130131D01-E

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan	TAF
USA	A2I A

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada
Norway	Nemko
Japan	VCCI
Taiwan	BSMI
USA	FCC

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions (Power port)	0.15MHz ~ 30MHz	± 1.56
Conducted emissions (Telecom port)	0.15MHz ~ 30MHz	± 2.19
Radiated emissions	30MHz ~ 1000MHz	± 3.91
Radiated emissions	1000MHz ~ 6000MHz	± 3.23

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2005, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

7 EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. LIMITS

FREQUENCY (MHz)	Class A	A (dBuV) Class B (dBuV)		
PREQUENCT (MHZ)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Report No.: T130131D01-E

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

Conducted Emission room # A								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
TEST RECEIVER	R&S	ESCI	101201	09/10/2013				
LISN (EUT)	SCHWARZBECK	NSLK 8127	8127527	12/11/2013				
LISN	SCHWARZBECK	NSLK 8127	8127526	12/11/2013				
BNC CABLE	EMCI	5Dr	BNC A6	12/11/2013				
Pulse Limiter	R&S	ESH3-Z2	C3010026-2	09/07/2013				
THERMO- HYGRO METER	WISEWIND	201A	No. 02	05/14/2013				
Test S/W	EZ-EMC							

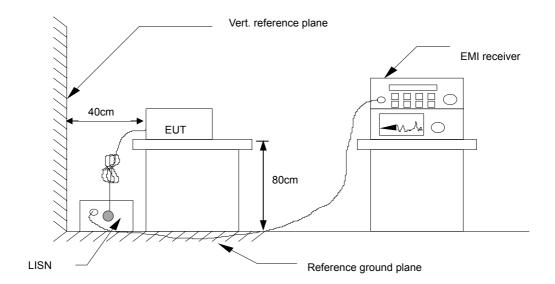
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

7.1.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test

• The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.


Report No.: T130131D01-E

- All I/O cables were positioned to simulate typical actual usage as per EN 55022.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

7.1.4. TEST SETUP

Report No.: T130131D01-E

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

•	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Line
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
	x.xx	42.95	0.55	43.50	73	-29.50	Q	L1

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading

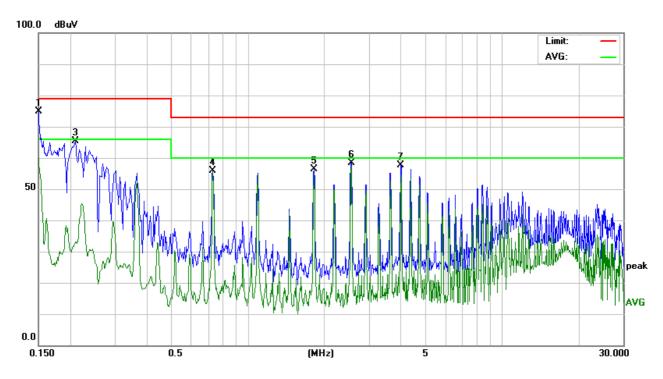
Factor = Insertion loss of LISN + Cable Loss + Pulse Limit

Result = Reading + Factor
Limit = Limit stated in standard
Margin = Reading in reference to limit

P = Peak Reading

Q = Quasi-peak Reading A = Average Reading

L1 = Hot side L2 = Neutral side

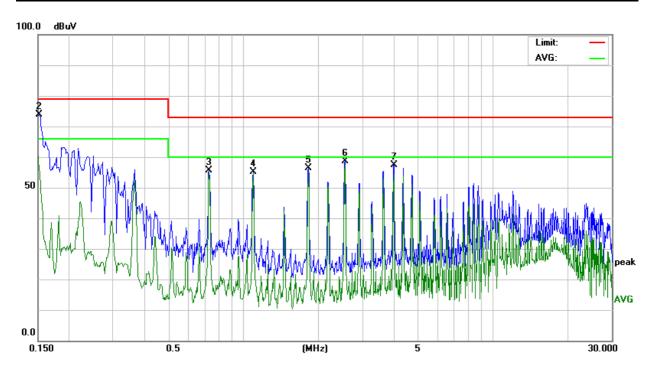

Calculation Formula

Margin (dB) = Result (dBuV) – Limit (dBuV)

7.1.6. TEST RESULTS

Model No.	IMBA-H61A-A10	6dB Bandwidth	9 kHz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 1
Tested by	Kevin Wang	Phase	L1
Standard	EN 55022 CLASS A		

Report No.: T130131D01-E


Conducted Emission Readings								
Frequency Range Investigated				150 kHz to 30 MHz				
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)	
0.1500	64.92	10.07	74.99	79.00	-4.01	Р	L1	
0.1500	49.85	10.07	59.92	66.00	-6.08	Α	L1	
0.2100	55.21	10.07	65.28	79.00	-13.72	Р	L1	
0.7300	45.66	10.10	55.76	73.00	-17.24	Р	L1	
1.8220	46.20	10.23	56.43	73.00	-16.57	Р	L1	
2.5540	48.19	10.28	58.47	73.00	-14.53	Р	L1	
4.0060	47.24	10.35	57.59	73.00	-15.41	Р	L1	

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

2. Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.

Model No.	IMBA-H61A-A10	6dB Bandwidth	9 kHz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 1
Tested by	Kevin Wang	Phase	L2
Standard	EN 55022 CLASS A		

Report No.: T130131D01-E

Conducted Emission Readings								
Frequency Range Investigated				150 kHz to 30 MHz				
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)	
0.1500	50.36	10.05	60.41	66.00	-5.59	Α	L2	
0.1516	63.73	10.05	73.78	79.00	-5.22	Р	L2	
0.7300	45.66	10.08	55.74	73.00	-17.26	Р	L2	
1.0940	45.02	10.12	55.14	73.00	-17.86	Р	L2	
1.8220	46.15	10.21	56.36	73.00	-16.64	Р	L2	
2.5540	48.24	10.27	58.51	73.00	-14.49	Р	L2	
4.0140	47.02	10.34	57.36	73.00	-15.64	Р	L2	

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

2. Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.

7.2. CONDUCTED EMISSION MEASUREMENT AT TELECOMMUNICATION PORTS

7.2.1. LIMITS

For Class A Equipment

FREQUENCY (MHz)	Voltage Li	mit (dBuV)	Current Limit (dBuA)		
PREQUENCT (MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30	
0.5 ~ 30.0	87	74	43	30	

Report No.: T130131D01-E

NOTE: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

For Class B Equipment

FREQUENCY (MHz)	Voltage Li	mit (dBuV)	Current Limit (dBuA)		
FREQUENCT (MHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20	
0.5 - 30.0	74	64	30	20	

NOTE: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

7.2.2. TEST INSTRUMENTS

Conducted Emission room # A								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
TEST RECEIVER	R&S	ESCI	101201	09/10/2013				
LISN (EUT)	SCHWARZBECK	NSLK 8127	8127527	12/11/2013 12/11/2013				
LISN	SCHWARZBECK	NSLK 8127	8127526					
BNC CABLE	EMCI	5Dr	BNC A6	12/11/2013				
Pulse Limiter	R&S	ESH3-Z2	C3010026-2	09/07/2013				
THERMO- HYGRO METER	WISEWIND	201A	No. 02	05/14/2013				
ISN	TESEQ	ISN T800	29449	12/10/2013				
Test S/W	EZ-EMC							

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

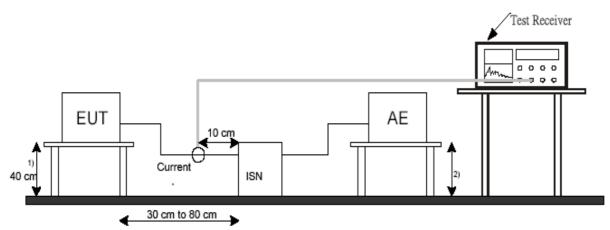
2. N.C.R = No Calibration Request.

7.2.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-031)

- Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.
- The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.

Report No.: T130131D01-E

- Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.
- Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- In case of measuring on the screened cable, the current limit shall be applied; otherwise the voltage limit should be applied.
- The following test modes was scanned during the preliminary test:


Modes:

1		10Mbps
2	LAN 1	100Mbps
3		1Gbps
4	LAN 2	1Gbps

• After the preliminary scan, we found the following test mode(s) producing the highest emission level and test data of the worst case was recorded.

Mode: 3.

7.2.4. TEST SETUP

Report No.: T130131D01-E

- 1) Distance to the ground reference plane (vertical or horizontal).
- 2) Distance to the ground reference plane is not critical.
- For the actual test configuration, please refer to the related item Photographs of the Test Configuration.

7.2.5. DATA SAMPLE

Freq.	Reading	Factor	Result	Limit	Margin	Detector
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)
X.XX	62.95	0.55	63.50	87	-23.50	

Freq. = Emission frequency in MHz

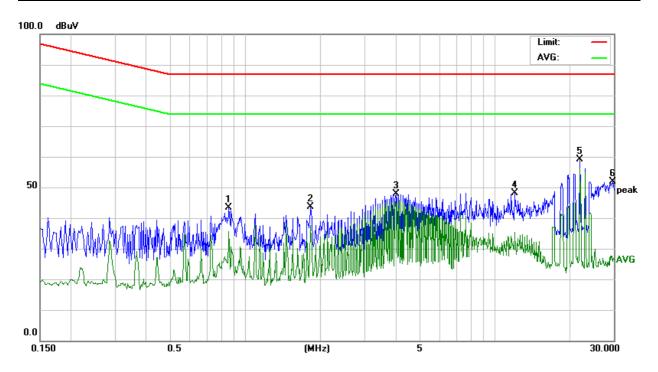
Reading = Uncorrected Analyzer/Receiver reading

Factor = Insertion loss of LISN + Cable Loss + Pulse Limit

Result = Reading + Factor

Limit = Limit stated in standard
Margin = Reading in reference to limit

P = Peak Reading
Q = Quasi-peak Reading
A = Average Reading


Calculation Formula

Margin (dB) = Result (dBuV) – Limit (dBuV)

7.2.6. TEST RESULTS

Model No.	IMBA-H61A-A10	6dB Bandwidth	9 kHz
Environmental Conditions	22°C, 55% RH	Test Mode	Mode 3
Tested by	Kevin Wang	Standard	EN 55022 CLASS A

Report No.: T130131D01-E

Conducted Emission Readings								
Fred	quency Ran	ge Investiga	nted	150 kHz to 30 MHz				
Freq. (MHz)	• •		Limit (dBuV)	Margin (dB)	Detector (P/Q/A)			
0.8580	23.50	19.82 43.32		87.00	-43.68	Р		
1.8260	23.90	19.83	43.73	87.00	-43.27 -39.03	Р		
4.0140	28.10	19.87	47.97	87.00		Р		
12.0300	28.12	19.95	48.07	87.00	-38.93	Р		
21.9100	38.89 20.18		59.07	87.00	-27.93	Р		
29.8380	31.28	20.50	51.78	87.00	-35.22	Р		

Note: The emission level was or more than 2dB below the Average limit, so no re-check anymore.

7.3. RADIATED EMISSION MEASUREMENT

7.3.1. LIMITS

Below 1GHz

FREQUENCY (MHz)	dBuV/m (At 10m)		
T NEWOEINCT (MITTE)	Class A	Class B	
30 ~ 230	40	30	
230 ~ 1000	47	37	

Report No.: T130131D01-E

Above 1GHz

Frequency (MHz)	Class A (dBu	ıV/m) (At 3m)	Class B (dBuV/m) (At 3m)		
r requericy (Wiriz)	Average	Peak	Average	Peak	
1000 ~ 3000	56	76	50	70	
3000 ~ 6000	60	80	54	74	

NOTE: The lower limit shall apply at the transition frequencies.

According to EN 55022: 2010 clause 6.2, the measurement frequency range shown in the following table:

Highest frequency generated or used within the EUT or on which the EUT operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Less than 108	1000
108-500	2000
500-1000	5000
Above 1000	5 times of the highest frequency or 6GHz, whichever is less

7.3.2. TEST INSTRUMENTS

	Орег	n Area Test Site #	J		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
MEASURE RECEIVER	R&S	ESCI	101054	04/06/2013	
ANTENNA	SUNOL	JB1	A100209-2	10/01/2013	
PRE- AMPLIFIER	SCHAFFNER	CPA9231A	3613	05/31/2013	
CABLE	EMCI	8Dr	N-TYPE #J4、J6	08/17/2013	
THERMO- HYGRO METER	WISEWIND	201A	No. 04	06/12/2013	
Test S/W		EZ-I	EMC		
	Al	bove 1GHz Used			
SPECTRUM ANALYZER (9kHz-30GHz)	R&S	FSP 30	100112	10/21/2013	
ANTENNA (1-18GHz)	ETS	3117	00139062	11/04/2013	
AMPLIFIER (1-26.5GHz)	HP	8449B	3008A01266	12/16/2013	
CABLE (1-40GHz)	HUBER +SUHNER	SUCOFLEX 102	33106/2	12/16/2013	
CABLE (1-40GHz)	HUBER +SUHNER	SUCOFLEX 102	33633/2	12/16/2013	
CABLE (1-26.5GHz)	HUBER +SUHNER	SUCOFLEX 104PEA	33960/4PEA	12/16/2013	
THERMO- HYGRO METER	WISEWIND	201A	No. 02	05/14/2013	
Test S/W		EZ-I	EMC		

Report No.: T130131D01-E

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

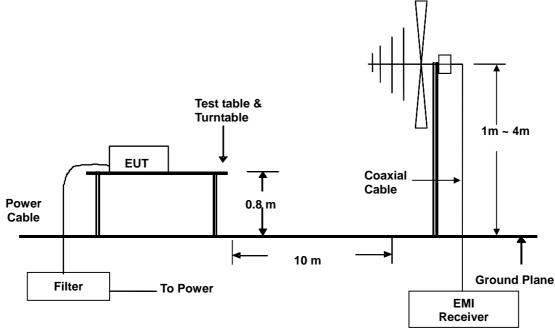
^{2.} N.C.R = No Calibration Request.

7.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test

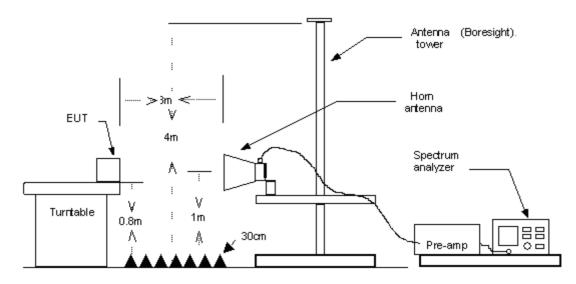
The equipment was set up as per the test configuration to simulate typical usage per the
user's manual. When the EUT is a tabletop system, a wooden turntable with a height of
0.8 meters is used which is placed on the ground plane. When the EUT is a floor
standing equipment, it is placed on the ground plane which has a 15 cm non-conductive
covering to insulate the EUT from the ground plane.

Report No.: T130131D01-E


- Support equipment, if needed, was placed as per EN 55022.
- All I/O cables were positioned to simulate typical usage as per EN 55022.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in EN 55022.
 The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 6000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna
 position, polarization and turntable position were recorded into a computer in which
 correction factors were used to calculate the emission level and compare reading to the
 applicable limit. Below 1GHz the Q.P. reading and above 1GHz the Peak and Average
 reading are presented.
- The test data of the worst-case condition(s) was recorded.


7.3.4. TEST SETUP

Below 1GHz

Report No.: T130131D01-E

Above 1GHz

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

7.3.5. DATA SAMPLE

Below 1GHz

Freq.	Reading (dBuV)	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q)	(H/V)
x.xx	14.0	12.2	26.2	40	-13.8	Q	Н

Report No.: T130131D01-E

Above 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/A)	(H/V)
X.XX	42.95	0.55	43.50	60	-16.50	Α	

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading Factor = Antenna Factor + Cable Loss - Amplifier Gain

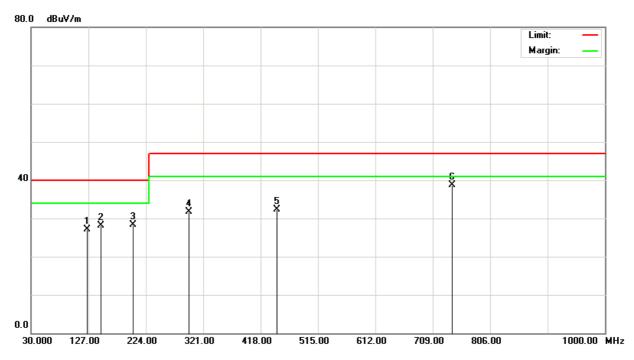
Result = Reading + Factor Limit = Limit stated in standard Margin = Reading in reference to limit

P = Peak Reading

Q = Quasi-peak Reading A = Average Reading

H = Antenna Polarization: Horizontal V = Antenna Polarization: Vertical

Calculation Formula

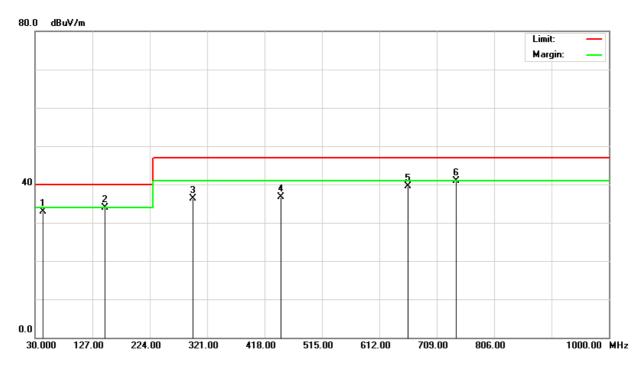

Margin (dB) = Result (dBuV/m) - Limit (dBuV/m)

7.3.6. TEST RESULTS

Below 1GHz

Model No.	IMBA-H61A-A10	Test Mode	Mode 1
Environmental Conditions	24.4°C, 54% RH	6dB Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Julon Liu
Standard	EN 55022 CLASS A		

Report No.: T130131D01-E


	Radiated Emission Readings												
Fr	equency R	ange Inves	stigated		30 MHz to 1000 MHz at 10m								
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)		Margin (dB)	Height (cm)	Degree (°)	Detector (P/Q)	Pol. (H/V)			
125.0500	40.50	-13.36	27.14	40.00		-12.86	100	252	Q	٧			
148.5000	42.30	-14.23	28.07	40.	.00	-11.93	100	221	Q	٧			
202.3400	42.60	-14.23	28.37	40.	.00	-11.63	100	114	Q	٧			
297.0000	44.50	-12.71	31.79	47.00		-15.21	100	161	Q	٧			
445.5000	40.90	-8.66	32.24	47.00		-14.76	400	54	Q	٧			
742.5000	42.10	-3.33	38.77	47.	.00	-8.23	400	322	Q	٧			

Note: 1. The other emission levels were very low against the limit.

2. P= Peak Reading; Q= Quasi-peak Reading.

Model No.	IMBA-H61A-A10	Test Mode	Mode 1
Environmental Conditions	24.4°C, 54% RH	6dB Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Julon Liu
Standard	EN 55022 CLASS A		

Report No.: T130131D01-E

	Radiated Emission Readings											
Fr	equency R	ange Inves	tigated		30 MHz to 1000 MHz at 10m							
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)		Margin (dB)	Height (cm)	Degree (°)	Detector (P/Q)	Pol. (H/V)		
43.5000	50.20	-17.24	32.96	40.00		-7.04	400	145	Q	Н		
148.5000	48.10	-14.23	33.87	40.	.00	-6.13	400	126	Q	Н		
297.0000	49.10	-12.71	36.39	47.	.00	-10.61	400	232	Q	Н		
445.5000	45.30	-8.66	36.64	47.00		-10.36	100	221	Q	Н		
660.0000	44.20	-4.72	39.48	47.00		-7.52	100	147	Q	Н		
742.5000	44.30	-3.33	40.97	47.	.00	-6.03	100	181	Q	Н		

Note: 1. The other emission levels were very low against the limit.

2. P= Peak Reading; Q= Quasi-peak Reading.

Above 1GHz

Model No.	IMBA-H61A-A10	Test Mode	Mode 1
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	1 MHz
Antenna Pole	Vertical / Horizontal	Antenna Distance	3m
Highest frequency generated or used	3500MHz	Upper frequency	6000MHz
Detector Function	Peak and average.	Tested by	Julon Liu
Standard	EN 55022 CLASS A		

Report No.: T130131D01-E

	Radiated Emission Readings											
Frequ	uency Rang	ge Investig	ated		Above 1GH	Iz at 3m						
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/A)	Pol. (H/V)					
1080.000	54.63	-7.75	46.88	76.00	-29.12	Р	V					
1135.000	61.92	-7.56	54.36	76.00	-21.64	Р	٧					
1225.000	54.72	-7.24	47.48	76.00	-28.52	Р	V					
1295.000	55.84	-7.00	48.84	76.00	-27.16	Р	V					
2110.000	55.92	-1.50	54.42	76.00	-21.58	Р	٧					
2460.000	50.50	-0.98	49.52	76.00	-26.48	Р	٧					

	Radiated Emission Readings											
F	requency l	Range Inve	estigated		Above 1GH	Iz at 3m						
Freq. (MHz)					Margin (dB)	Detector (P/A)	Pol. (H/V)					
1225.000	55.95	-7.24	48.71	76.00	-27.29	Р	Н					
1405.000	52.66	-6.61	46.05	76.00	-29.95	Р	Н					
1785.000	53.65	-3.65	50.00	76.00	-26.00	Р	Н					
2120.000	49.22	-1.49	47.73	76.00	-28.27	Р	Н					
2455.000	53.27	-0.99	52.28	76.00	-23.72	Р	Н					
2755.000	49.09	-0.64	48.45	76.00	-27.55	Р	Н					

Note: 1. The other emission levels were very low against the limit.

2. P= Peak Reading; A= Average Reading.

7.4. HARMONICS CURRENT MEASUREMENT

7.4.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for	Limits for Class A equipment						
Harmonics	Max. permissible						
Order	harmonics current						
n	A						
Od	d harmonics						
3	2.30						
5	1.14						
7	0.77						
9	0.40						
11	0.33						
13	0.21						
15<=n<=39	0.15x15/n						
Eve	en harmonics						
2	1.08						
4	0.43						
6	0.30						
8<=n<=40	0.23x8/n						

	Limits for Class D equipment								
Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A							
	Odd Harmonics only								
3	3.4	2.30							
5	1.9	1.14							
7	1.0	0.77							
9	0.5	0.40							
11	0.35	0.33							
13	0.30	0.21							
15<=n<=39	3.85/n	0.15x15/n							

Report No.: T130131D01-E

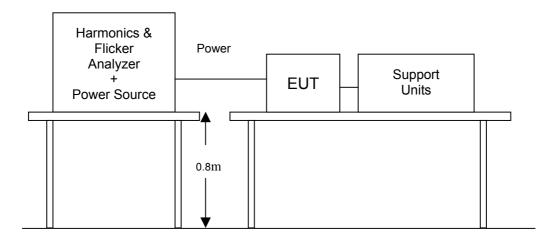
NOTE: 1. Class A and Class D are classified according to item 7.4.3.

7.4.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
H/F Measurement System	EMC Partner	HAR1000-1P	189	08/19/2013			
Digital Power Meter	Protronix	Protronix 1201		No Calibration Required			
Software	HARCS V4.19						

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

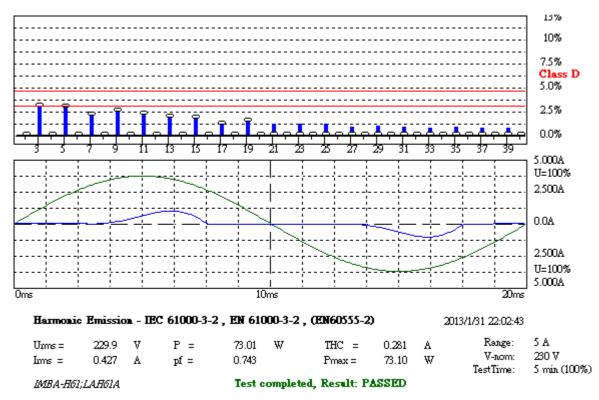

7.4.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-029)

 The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.

Report No.: T130131D01-E

- The classification of EUT is according to section 5 of EN 61000-3-2.
- The EUT is classified as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B: Portable tools; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.
- The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

7.4.4. TEST SETUP


 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

7.4.5. TEST RESULTS

Power Consumption	73.01W	Test Results	PASS
Environmental Conditions	18°C, 48% RH, 1005mbar	Limits	Class □ A □ B □ C 図 D
Test Mode	Operating	Tested by	Julon Liu

NOTE: Limits classified according to item 7.4.1.

Test result of EN 61000-3-2

HAR-1000 PMC-Partner

Report No.: T130131D01-E

Compliance Certification Services Inc.

Report No.: T130131D01-E

THDi = 86.9 % THDu = 0.10 % Class D

Test - Time : 5min (100 %)

Limit Reference: Pmax = 73.105W

Test completed, Result: PASSED

Order	Freq. Status	lavg	Irms	Irms%	Irms%L	Imax	Imax%	Imax%L	Limit
1 2	[Hz] 50 100	[A] 0.3211 0.0000	[A] 0.3241 0.0009	[%] 75.857 0.2143	[%]	[A] 0.3241 0.0009	[%] 75.857 0.2143	[%]	[A]
3	150 200	0.2424 0.0000	0.2426 0.0006	56.786 0.1429	97.610	0.2426 0.0009	56.786 0.2143	97.610	0.2486
5 6	250 300	0.1280 0.0000	0.1282 0.0003	30.000 0.0714	92.278	0.1282 0.0006	30.000 0.1429	92.278	0.1389
7 8	350 400	0.0479 0.0000	0.0479 0.0003	11.214 0.0714	65.540	0.0482 0.0003	11.286 0.0714	65.957	0.0731
9 10	450 500	0.0293 0.0000	0.0293 0.0003	6.8571 0.0714	80.150	0.0293 0.0003	6.8571 0.0714	80.150	0.0366
11 12	550 600	0.0178 0.0000	0.0177 0.0003	4.1429 0.0714	69.177	0.0180 0.0003	4.2143 0.0714	70.370	0.0256
13 14	650 700	0.0128 0.0000	0.0128 0.0000	3.0000	59.202	0.0128	3.0000 0.0714	59.202	0.0217
15 16	750 800	0.0104	0.0104	2.4286	55.299	0.0107	2.5000 0.0714	56.925	0.0188
17 18	850 900	0.0061	0.0061 0.0000	1.4286	36.866	0.0061	1.4286 0.0714	36.866	0.0166
19 20	950 1000	0.0070	0.0070 0.0000	1.6429 0.0000	47.383	0.0073 0.0003	1.7143 0.0714	49.443	0.0148
21 22	1050 1100	0.0000	0.0046 0.0000	1.0714 0.0000	34.155	0.0046 0.0003	1.0714 0.0714	34.155	0.0134
23 24 25	1150 1200 1250	0.0000 0.0000 0.0000	0.0040 0.0000 0.0040	0.9286 0.0000 0.9286	32.420	0.0040 0.0003 0.0040	0.9286 0.0714 0.9286	32.420 35.239	0.0122
26 27	1300 1350	0.0000	0.0040 0.0000 0.0024	0.9280 0.0000 0.5714	35.239 23.421	0.0040 0.0003 0.0024	0.9280 0.0714 0.5714	23.421	0.0113
28 29	1400 1450	0.0000 0.0000 0.0000	0.0024 0.0000 0.0027	0.0000 0.6429	28.300	0.0024 0.0003 0.0027	0.0714 0.6429	28.300	0.0097
30 31	1500 1550	0.0000	0.0027 0.0000 0.0021	0.0000 0.5000	23.529	0.0027 0.0003 0.0021	0.0714 0.5000	23.529	0.0091
32 33	1600 1650	0.0000	0.0000 0.0018	0.0000 0.4286	21.469	0.0021 0.0003 0.0018	0.0714 0.4286	21.469	0.0085
34 35	1700 1750	0.0000	0.0000 0.0018	0.0000 0.4286	22.770	0.0003 0.0018	0.0714 0.4286	22.770	0.0080
36 37	1800 1850	0.0000	0.0000 0.0015	0.0000 0.3571	20.059	0.0003 0.0015	0.0714 0.3571	20.059	0.0076
38 39	1900 1950	0.0000	0.0000 0.0012	0.0000 0.2857	16.915	0.0003 0.0015	0.0714 0.3571	21.144	0.0073
40	2000	0.0000	0.0000	0.0000	10.010	0.0003	0.0714	2 1.177	0.0012

Report No.: T130131D01-E

Definitions of Abbreviations

Urms Actual total Voltage in Volt RMS *** Irms Actual total Current in Ampere RMS *** lpk Actual Peak value of the Current in Ampere *** cf Actual Crest Factor (lpk/lrms) *** Actual Active Power in Watt *** S Actual Apparent Power in VA (Urms*Irms) Actual Power Factor (P/S) pf *** THDi Actual Total Harmonic Current Distortion in % THDu Actual Total Harmonic Voltage Distortion in % *** THC Actual Total Harmonic Current in Ampere PHC Actual Partial Harmonic Current in Ampere

Individual measurements for 2nd to 40th order:

lavg Average value of the Individual Harmonic Current

in Ampere RMS

Irms *** Actual Individual Harmonic Current

in Ampere RMS

Irms% *** Actual Individual Harmonic Current

in percentage of the actual total RMS Current

Irms%L *** Actual Individual Harmonic Current

in percentage of the applicable Limit

Imax Maximum Individual Harmonic Current

in Ampere RMS

Imax% Maximum Individual Harmonic Current

in percentage of the actual total RMS Current

Imax%lim Maximum Individual Harmonic Current

in percentage of the applicable Limit

Limit Irms Individual Limit (100%) for the selected Class

in Ampere RMS

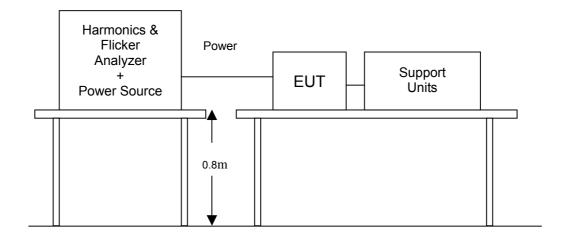
7.5. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

7.5.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

Report No.: T130131D01-E

7.5.2. TEST INSTRUMENTS


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
H/F Measurement System	EMC Partner	HAR1000-1P	189	08/19/2013
Digital Power Meter	Protronix	1201	201091	No Calibration Required
Software	HARCS V4.19			

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

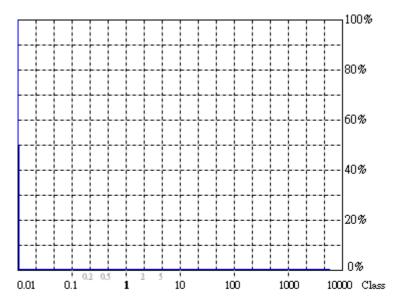
7.5.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-030)

- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.5.4. TEST SETUP

Report No.: T130131D01-E

• For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.


7.5.5. TEST RESULTS

Observation Period (Tp)	10mins	Test Mode	Operating
Environmental Conditions	18°C, 48% RH, 1005mbar	Tested by	Julon Liu

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P_{st}	0.07	1.0	PASS
P _{lt}	0.07	0.65	PASS
T _{dt} (ms)	0	500	PASS
d _{max} (%)	0	4%	PASS
dc (%)	0.03	3.3%	PASS

Note: None.

Test result of EN 61000-3-3

Flicker Emission - IEC 61000-3-3, EN 61000-3-3, (EN60555-3)

Umrs = 229.9 V P = 73.63 V Imrs = 0.415 A pf = 0.772

IMBA-R61;LAR61A Test completed, Result: PASSED

Actual Flicker (Fli): 0.00

Short-term Flicker (Pst): 0.07

Report No.: T130131D01-E

Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07 Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

Voltage Change (dc): 0.03%

Limit (dc): 3.30%

Maximum Interval

exceeding 3.30% (dt): 0.00ms

Limit (dt>Lim): 500ms

2013/1/31 22:37:56

Range: 50 A V-nom: 230 V

TestTime: 30 min (100%)

HAR-1000 PMC-Partner

8 IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Test Type		
	Minimum Requirement	
IEC 61000-4-2	Electrostatic Discharge – ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B	
IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test — RS: 80 ~1000 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A	
IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power Port: 1kV DC Power Port: 0.5kV Signal Ports and Telecommunication Ports: 0.5kV Performance Criterion B	
IEC 61000-4-5	Surge Immunity Test: 1.2/50 µs Open Circuit Voltage, 8/20 µs Short Circuit Current, 10/700 µs Open Circuit Voltage, AC Power Port ~ line to line: 1kV, line to earth (ground): 2kV DC Power Port ~ line to earth: 0.5kV Signal Ports and Telecommunication Ports ~ line to ground: 1 Performance Criterion B	
IEC 61000-4-6	Conducted Radio Frequency Disturbances Test - CS: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A	
IEC 61000-4-8	Power frequency magnetic field immunity test 50 Hz or 60 Hz, 1A/m Performance Criterion A	
IEC 61000-4-11	Voltage Dips: i) >95% reduction for 0.5 period, Performance Criterion B ii) 30% reduction for 25 period, Performance Criterion C Voltage Interruptions: >95% reduction for 250 period Performance Criterion C	
	EC 61000-4-3 EC 61000-4-4 EC 61000-4-6 EC 61000-4-8	

Report No.: T130131D01-E

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
Criteria B:	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report No.: T130131D01-E

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-2

Discharge Impedance: 330 ohm / 150 pF

Discharge Voltage: Air Discharge: 2; 4; 8 kV (Direct)

Contact Discharge: 2; 4 kV (Direct/Indirect)

Report No.: T130131D01-E

Polarity: Positive & Negative

Number of Discharge: Air Discharge: min. 10 times at each test point for each polarity

Contact Discharge: min. 200 times in total

Discharge Mode: Single Discharge

1 second minimum

8.3.2. TEST INSTRUMENT

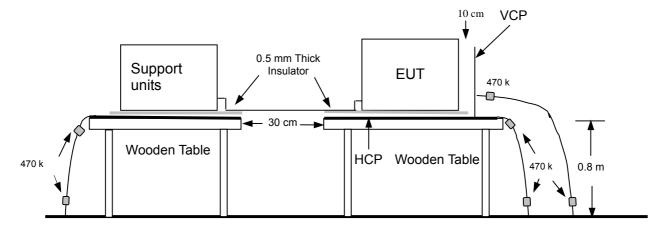
IMMUNITY SHIELDED ROOM								
Name of Equipment	Manufacturer Model Serial Number Calibration D							
ESD Generator	Teseq	NSG 437	249	12/18/2013				
Aneroid Barometer	Sato	7610-20	89090	11/04/2013				
Thermo-Hygro meter	TECPEL	DTM-303	080269	05/07/2013				

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

8.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-022)

The discharges shall be applied in two ways:

- a) Contact discharges to the conductive surfaces and coupling planes:
 - The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.


Report No.: T130131D01-E

b) Air discharges at slots and apertures and insulating surfaces: On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the **HCP** (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

8.3.4. TEST SETUP

Report No.: T130131D01-E

Ground Reference Plane

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **Ground Reference Plane**. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **Horizontal Coupling Plane** $(1.6m \times 0.8m)$ was placed on the table and attached to the **GRP** by means of a cable with 940k $_{\cdot}$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.5. TEST RESULTS

Temperature	18°C	Humidity	48% RH
Pressure	1005mbar	Tested By	Julon Liu
Required Pa	ssing Performance		Criterion B

Report No.: T130131D01-E

	Air Discharge							
	T	est Leve	ls			Results		
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Criterion Observation			Observation	
Front						□A □B	Note □ 1 ⊠ 2	
Back							Note	
Left						□А □В	Note □1 ⊠2	
Right						□A □B	Note	
Тор						□А □В	Note □1 ⊠2	
Bottom						□A □B	Note ☐1 ⊠2	

Contact Discharge									
	Test Levels Results					Test Levels			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Pass Fail Performance Observ				
Front	\boxtimes			\boxtimes		⊠A □B	Note ⊠1		
Back	\boxtimes			\boxtimes		⊠A □B	Note ⊠ 1 □ 2		
Left	\boxtimes			\boxtimes		⊠A □B	Note ⊠ 1 □ 2		
Right						⊠A □B	Note ⊠ 1 □ 2		
Тор	\square	$oxed{\square}$		$oxed{\square}$		⊠A □B	Note ⊠ 1 □ 2		

Please refer to ESD test photo on next page for detail discharge point

Discharge To Horizontal Coupling Plane							
	Test Levels Results						
Side of EUT	± 2 kV	± 4 kV	± 8 kV	Pass	Fail Performance Observation		Observation
Front	\square	\square		\boxtimes		⊠A □B	Note ⊠1 □ 2
Back				\boxtimes		⊠A □B	Note ⊠ 1 □ 2
Left						⊠A □B	Note ⊠1 □ 2
Right				\boxtimes		\square A \square B	Note ⊠ 1 □ 2

Discharge To Vertical Coupling Plane							
	Test Levels Results						
Side of EUT	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Criterion Observation			Observation
Front	\boxtimes					⊠A □B	Note ⊠1
Back	\boxtimes	\boxtimes				⊠A □B	Note ⊠1 □ 2
Left						⊠A □B	Note ⊠ 1 □ 2
Right						⊠A □B	Note ⊠ 1 □ 2

NOTE: 1. There was no change compared with initial operation during the test.

2. Not applicable (Metal case).

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

Report No.: T130131D01-E

8.4.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-3

Frequency Range: 80 MHz ~1000 MHz

Field Strength: 3 V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

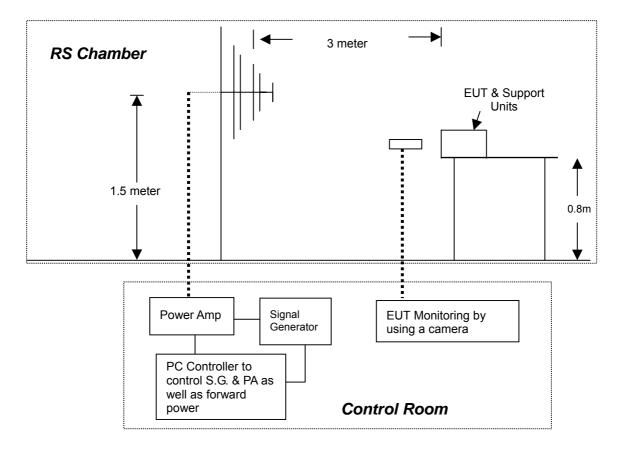
Polarity of Antenna: Horizontal and Vertical

Test Distance: 3 m **Antenna Height:** 1.5m

8.4.2. TEST INSTRUMENT

844 RS Chamber							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Calibration of Field	N/A	Chamber#RS	80-1000MHz	04/19/2013			
Signal Generator	Agilent	E4421B	MY43350597	05/27/2013			
Electric Field Probe	AR	FL7006	0338955	02/02/2013			
RF Power Meter	Boonton	4242-01-02	14357	02/28/2013			
Amplifier	AR	500W1000A	320994	No Calibration Required			
Direction Coupler	AR	DC6180A	312189	No Calibration Required			
Broadband Antenna	AR	AT1080	311819	No Calibration Required			
Thermo-Hygro meter	TFA	N/A	NO.6	11/11/2013			
Software	Emcware Ver. 2.6.0.16						

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R.= No Calibration required

8.4.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-023)

The test procedure was in accordance with IEC 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10 ⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. TEST SETUP

Report No.: T130131D01-E

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

Compliance Certification Services Inc.

8.4.5. TEST RESULTS

Temperature	18°C	Humidity	48% RH
Pressure	1005mbar	Dwell Time	3 sec.
Tested By	Julon Liu	Required Passing Performance	Criterion A

Report No.: T130131D01-E

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)		mance erion	Observation	Result
80 ~ 1000	V&H	0	3	⊠A	□в	Note	PASS
80 ~ 1000	V&H	90	3	⊠A	□в	Note	PASS
80 ~ 1000	V&H	180	3	⊠A	□В	Note	PASS
80 ~ 1000	V&H	270	3	⊠A	□В	Note	PASS

NOTE: There was no change compared with the initial operation during the test.

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-4

Test Voltage: AC Power Port: 1kV

Signal Ports and Telecommunication Ports: 0.5kV

Report No.: T130131D01-E

Polarity: Positive & Negative

Impulse Frequency: 5 kHz

Impulse Wave-shape: 5/50 ns

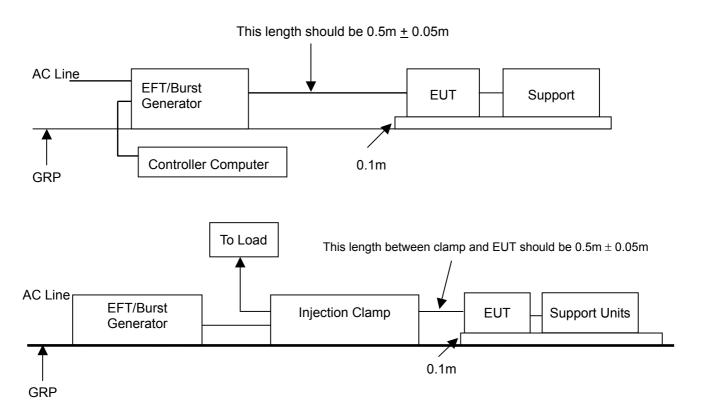
Burst Duration: 15 ms

Burst Period: 300 ms

Test Duration: Not less than 1 min.

8.5.2. TEST INSTRUMENT

Immunity Shield Room							
Name of Equipment	ame of Equipment Manufacturer Model Serial Number Calibratio						
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013			
Capacitive Clamp	EMC-Partner	EMC-Partner CN-EFT1000 589 No Calibration Required					
Software	Genecs Ver. 3.27						


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.5.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-024)

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

8.5.4. TEST SETUP

Report No.: T130131D01-E

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

Compliance Certification Services Inc.

8.5.5. TEST RESULTS

Temperature	18°C	Humidity	48% RH	
Pressure	1005mbar	Tested By	Julon Liu	
Required P	assing Performance	Criterion B		

Report No.: T130131D01-E

Test Point	Polarity	Test Level (kV)		mance erion	Observation	Result
L	+/-	1	⊠A	□в	Note ⊠ 1 □ 2	PASS
N	+/-	1	⊠A	□В	Note ⊠ 1 □ 2	PASS
L – N	+/-	1	⊠A	□в	Note ⊠ 1 □ 2	PASS
PE	+/-	1	⊠A	□В	Note ⊠ 1 □ 2	PASS
L – PE	+/-	1	⊠A	□В	Note ⊠ 1 □ 2	PASS
N – PE	+/-	1	⊠A	□в	Note ⊠ 1 □ 2	PASS
L – N – PE	+/-	1	⊠A	□в	Note ⊠1	PASS
RJ45	+/-	0.5	⊠A	□В	Note ⊠ 1 □ 2	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-5

Wave-Shape: Combination Wave

1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current 10/700 µs Open Circuit Voltage

AC Power Port~ line to line: 1kV, line to ground: 2kV **Test Voltage:**

Signal Ports and Telecommunication Ports: 1kV

Report No.: T130131D01-E

AC Power Line: L-N / L-PE / N-PE Surge Input/Output:

Signal Line: L-G

Generator Source Impedance: 2 ohm between networks

> 12 ohm between network and ground 42 ohm between network and ground

Polarity: Positive/Negative

Phase Angle: 0° / 90° / 180° / 270°

Pulse Repetition Rate: 1 time / min. (maximum)

Number of Tests: 5 positive and 5 negative at selected points

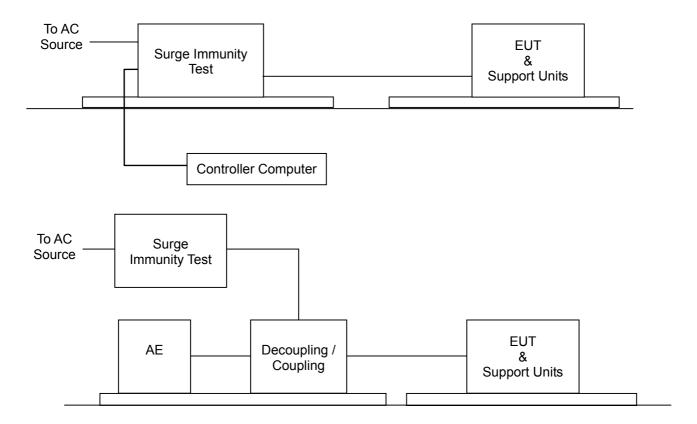
8.6.2. TEST INSTRUMENT

Immunity Shield Room					
Name of Equipment	ame of Equipment Manufacturer Model Serial Number Calibration D				
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013	
CDN	EMC Partner	CDN-UTP8	CDN-UTP8-1505	03/07/2013	
Software	Genecs Ver. 3.27				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.6.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-025)


a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT: The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

Report No.: T130131D01-E

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

8.6.5. TEST RESULTS

Temperature	18°C	Humidity	48% RH
Pressure	1005mbar	Tested By	Julon Liu
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L - N	+/-	1	⊠A □B	Note ⊠1 □ 2	PASS
L - PE	+/-	2	⊠A □B	Note ⊠ 1 □ 2	PASS
N - PE	+/-	2	⊠A □B	Note ⊠1 □ 2	PASS
RJ45	+/-	1	⊠A □B	Note ⊠1 □ 2	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

Report No.: T130131D01-E

8.7.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-6

Frequency Range: 0.15 MHz ~ 80 MHz

Field Strength: 3 Vrms

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Coupled cable: Power Mains, Unshielded; RJ45 Line, Unshielded

Coupling device: CDN-M3 (3 wires); CDN-T8

8.7.2. TEST INSTRUMENT

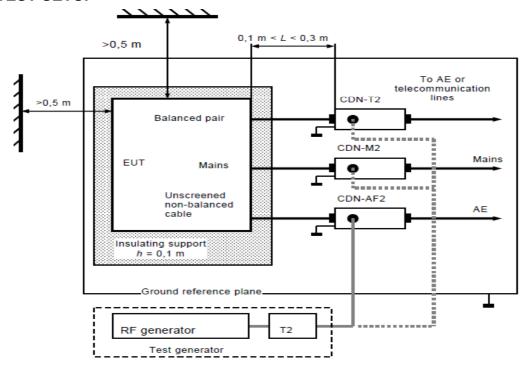
	CS Room				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
CWS Generator	EM Test	CWS 500N1	V0395105080	10/01/2013	
CDN	Schaffner	CDN M316	19600	07/30/2013	
CDN	Teseq	CDN T400A	25674	01/17/2014	
CDN	Teseq	CDN T800	26155	02/13/2013	
Attenuator	EMCI	SA3NL	10006F	No Calibration Required	
Software	icd.control Ver. 5.1.9				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.7.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-026)

The EUT shall be tested within its intended operating and climatic conditions.


The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

Report No.: T130131D01-E

Note: 1. The CDNs and / or EM clamp used for real test depends on ports and cables configuration of EUT.

- 2. The EUT clearance from any metallic obstacles shall be at least 0.5m All non-excited input ports of the CDNs shall be terminated by 50Ω loads
- For the actual test configuration, please refer to the related item Photographs of the Test Configuration.

NOTE:

TABLE-TOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.5. TEST RESULTS

Temperature	18°C	Humidity	48% RH
Pressure	1005mbar	Tested By	Julon Liu
Required Passing Performance		Criterion A	

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method		mance erion	Observation	Result
0.15 ~ 80	3	AC Power Line (0.3m)	CDN-M3	⊠A	□в	Note ⊠1 □2	PASS
0.15 ~ 80	3	RJ 45 Line (0.3m)	CDN-T8	⊠A	□в	Note ⊠1	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.8. POWER FREQUENCY MAGNETIC FIELD

8.8.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-8

Frequency Range: 50 Hz or 60 Hz

Field Strength: 1 A/m

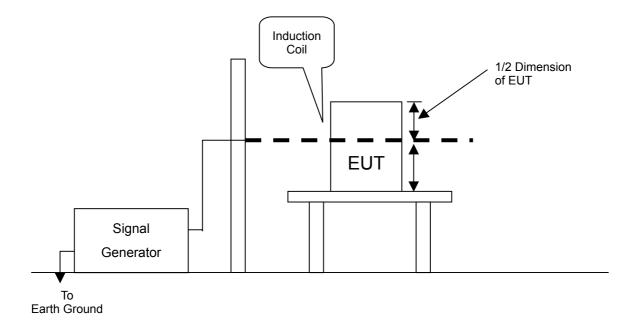
Observation Time: 1 minute

Inductance Coil: Rectangular type, 1mx1m

8.8.2. TEST INSTRUMENT

Immunity Shield Room					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Induction Coil Interface	Schaffner	INA 2141	6009	No Calibration Required	
5KVA Power Source	Teseq	5001IX-208-TSQ	1207A03643	No Calibration Required	
AC/DC Clamp Meter	Lutron	CM-9930R	I.200121	06/03/2013	
Magnetic Field Meter	Sypris	4080	0247	03/12/2013	

Report No.: T130131D01-E


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.8.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-027)

- a. The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

8.8.4. TEST SETUP

Report No.: T130131D01-E

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

8.8.5. TEST RESULTS

Temperature	N/A	Humidity	N/A
Pressure	N/A	Tested By	N/A
Required Passing Performance		Criterion A	

DIRECTION	Field Strength (A/m)	Performance Criterion	OBSERVATION	RESULTS
Χ	1	Α	Note	N/A
Υ	1	А	Note	N/A
Z	1	А	Note	N/A

NOTE: There is no any sensitive part for magnetic field test. Applicable only to equipment containing susceptible to magnetic field.

8.9. VOLTAGE DIPS & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-11

Test duration time: Minimum three test events in sequence

Interval between event: Minimum 10 seconds

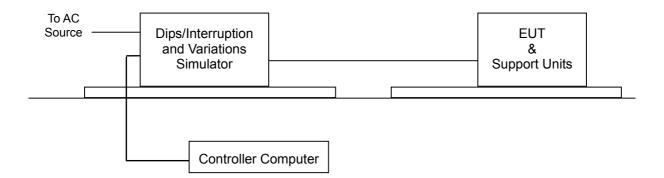
Phase Angle: 0° / 45° / 90° / 135° / 180° / 225° / 270° / 315° / 360°

Report No.: T130131D01-E

Test cycle: 3 times

8.9.2. TEST INSTRUMENT

Immunity shielded room					
Name of Equipment	Manufacturer Model Serial Number Calibration Due				
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/05/2013	
AC/DC Clamp Meter	Lutron CM-9930R I.200121 06/03/2013				
Software	Genecs Ver. 3.27				


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.9.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-028)

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 4. Recording the test result in test record form.

8.9.4. TEST SETUP

Report No.: T130131D01-E

 For the actual test configuration, please refer to the related item — Photographs of the Test Configuration.

8.9.5. TEST RESULTS

Temperature	18°C	Humidity	48% RH
Pressure	1005mbar	Tested By	Julon Liu
_	Criterion B: >95% reduction 0.9 Criterion C: 30% reduction 25	•	reduction 250 period

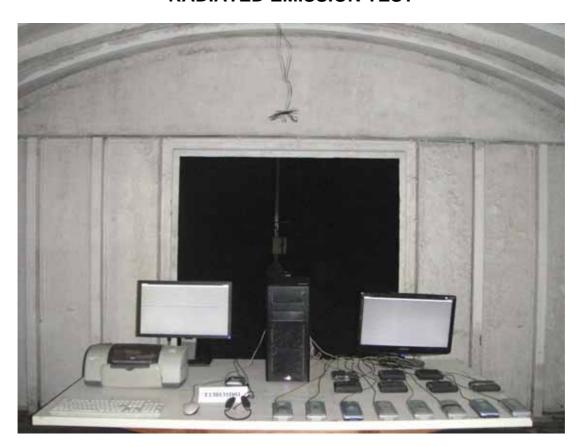
Test Power: 230Vac, 50Hz				
Voltage (% Reduction)	Duration (Period)	Performance Criterion	Observation	Test Result
>95	0.5	⊠A □B □C	Note ⊠1 □2	PASS
30	25	⊠A □B □C	Note ⊠1 □2	PASS
>95	250	□A □B ⊠C	Note	PASS

NOTE: 1. There was no change compared with initial operation during and after the test. No unintentional response was found during the test.

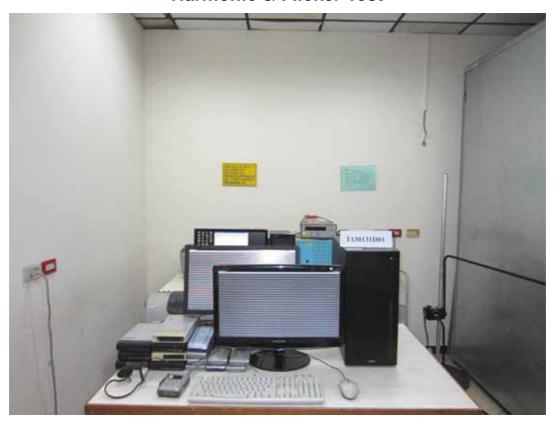
2. EUT shut down, it could not become normal except reinstalled by operator.

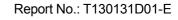
PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST

Report No.: T130131D01-E


CONDUCTED EMISSION TEST AT TELECOMMUNICATION PORTS RJ45 Telecom Port with ISN (10Mbps & 100Mbps & 1Gbps)

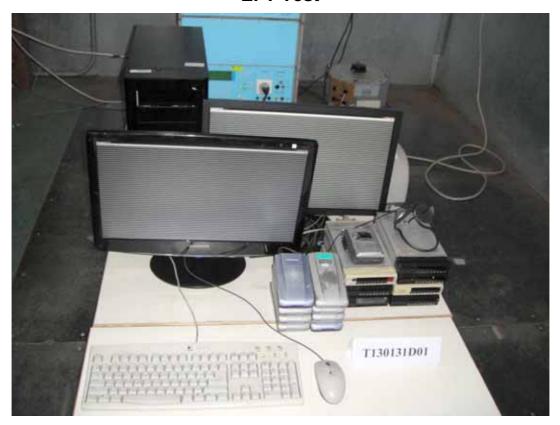
RADIATED EMISSION TEST

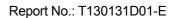

Report No.: T130131D01-E



Harmonic & Flicker Test

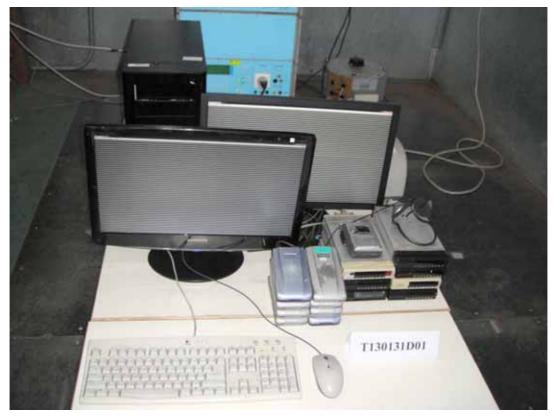
ESD Test

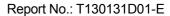




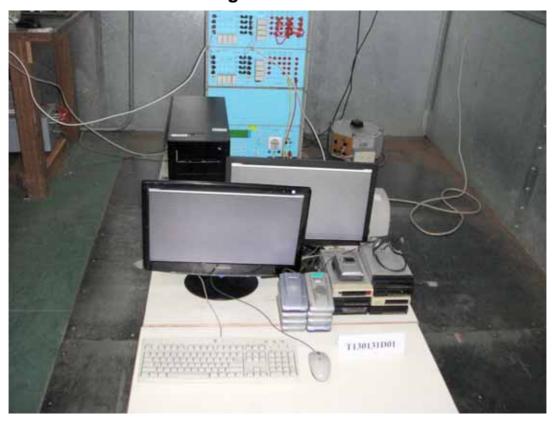
RS Test

EFT Test

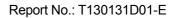




EFT For I/O Test

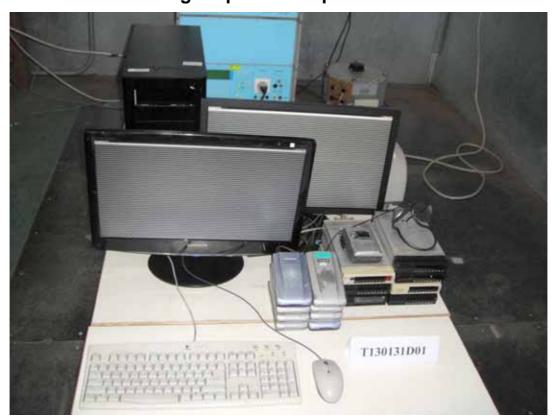


Surge Test



Surge For I/O Test

CS Test



CS For I/O Test

Voltage Dips / Interruptions Test

