

CE EMC

TEST REPORT

For

SubCompact Board

Model: GENE-1425

Trade Name: AAEON

Issued to

AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Hsintien Lab. No. 165, Chunghsen Road, Hsintien City Taipei Hsien, Taiwan TEL: (02) 2217-0894 FAX: (02) 2217-1029

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION
2	EU	Г DESCRIPTION4
3	TES	ST METHODOLOGY5
	3.1	EUT SYSTEM OPERATION
	3.2	DECISION OF FINAL TEST MODE
4	SET	TUP OF EQUIPMENT UNDER TEST6
5	FAC	CILITIES AND ACCREDITATIONS7
	5.1	FACILITIES7
	5.2	LABORATORY ACCREDITATIONS AND LISTINGS7
6	INS	TRUMENT AND CALIB RATION8
	6.1	MEASURING INSTRUMENT CALIBRATION8
	6.2	TEST AND MEASUREMENT EQUIPMENT8
7	LIN	E CONDUCTED & RADIATED EMISSION TEST11
	7.1	LIMIT11
		7.1.1 EN 5502211
		7.1.2 EN 55011
	7.2	TEST PROCEDURE OF LINE CONDUCTED EMISSION
		7.2.1 EN 55022
	7.3	7.2.2 EN 55011
	1.5	TELECOMMUNICATION PORT
		7.3.1 EN55022
	7.4	TEST PROCEDURE OF RADIATED EMISSION17
		7.4.1 EN 5502217
		7.4.2 EN 55011
	7.5	TEST RESULTS21
8	PO	WER HARMONICS TEST23
9	POV	WER VOLTAGE FLUCTUATION / FLICKER TEST25
1() ELI	ECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST27
11	l RAI	DIATED ELECTROMAGNETIC FIELD IMMUNITY TEST
12	2 FAS	ST TRANSIENTS/BURST IMMUNITY TEST
13	3 SUF	RGE IMMUNITY TEST
14	CO	NDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY
		TEST40
		WER FREQUENCY MAGNETIC FIELD IMMUNITY TEST42
		LTAGE DIPS / SHORT INTERRUPTIONS44
		DIX I - PHOTOGRAPHS OF TEST SETUP46
A	PPEN	DIX II – TEST RESULT OF EN 61000-3-355

1 TEST RESULT CERTIFICATION

Applicant:	AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.
Manufacturer:	AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C.
Equipment Under Test:	SubCompact Board
Trade Name:	AAEON
Model:	GENE-1425
Detailed EUT Description:	See Item 2 of this report
Date of Test:	May 02, 2006 ~ May 16, 2006

Applicable Standard	Class/Limit/Criterion	Test Result
EN 55011: 1998 + A1: 1999 + A2: 2000	Group 1 / Class A	No non-compliance noted
EN 55022:1998 + A1: 2000 + A2: 2003	Class A	No non-compliance noted
EN 61000-3-2: 2000	Class D	N/A
EN 61000-3-3: 1995 + A1: 2001	Limit	No non-compliance noted
EN 61000-6-2: 2001 (EN 55024: 1998 + A1: 20	01 + A2: 2003), including	
IEC 61000-4-2: 1995 +A1: 1998 +A2: 2000	Criterion B	No non-compliance noted
IEC 61000-4-3: 2002 + A1: 2002	Criterion A	No non-compliance noted
IEC 61000-4-4: 1995 +A1: 2000 +A2: 2001	Criterion B	No non-compliance noted
IEC 61000-4-5: 1995 +A1: 2000	Criterion B	No non-compliance noted
IEC 61000-4-6: 1996 +A1: 2000	Criterion A	No non-compliance noted
IEC 61000-4-8: 1993 +A1: 2000	Criterion A	N/A
IEC 61000-4-11: 1994 +A1: 2000	Criterion B/C/C	No non-compliance noted
Deviation f	rom Applicable Standard	
As the customers required	, we adopt the above standards	for testing.

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in the EMC Directive 89/336/EMC and the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

David Wang Manager of Hsintien Laboratory Compliance Certification Services Inc.

Reviewed by:

ang

Vince Chiang Assistant Manager of Hsintien Laboratory Compliance Certification Services Inc.

2 EUT DESCRIPTION

Product	SubCompact Board
Trade Name	AAEON
Model	GENE-1425
Housing Type	Metal case
EUT Power Rating	12VDC from AC Adaptor
AC Power During Test	230VAC / 50Hz to AC Adaptor
AC Adaptor Manufacturer	EDAC
AC Adaptor Model Number	EA1050A-120
AC Adaptor Power Rating	I/P: 100-240VAC, 50-60Hz O/P: 12VDC
DC Power Cable Type	Unshielded, 1.8m (Non-detachable, with two cores) to AC Adaptor
OSC/Clock Frequencies	25MHz; 24MHz

I/O PORT OF EUT

I/O PORT TYPE	Q'TY	TESTED WITH
1). SIO Port	2	2
2). LAN Port	6	6
3). USB Port	3	3

Note: Client consigns only one model sample (Model Number is GENE-1425) to test.

3 TEST METHODOLOGY

3.1 EUT SYSTEM OPERATION

- 1. Windows XP boots system.
- 2. Run Emctest.exe to activate all peripherals and display "H" pattern on monitor screen.
- 3. Run Winemc.exe then select (C:/ $\langle E:/ \langle G:/ \rangle$) to EUT.
- 4. Press the start menu, select executive and type ping 192.168.0.2 –t (EUT), ping 192.168.0.1 –t (Server PC).

Note: Test program is self-repeating throughout the test.

3.2 DECISION OF FINAL TEST MODE

1. The following test mode were scanned during the preliminary test:

Mode(s):

1.	LAN MODE
2.	USB MODE

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Conduction: Mode 1 Radiation: Mode 1

Then, the EUT configuration and cable configuration of the above highest emission mode was chosen for all final test items.

4 SETUP OF EQUIPMENT UNDER TEST

Setup Diagram

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

Support Equipment

EUT Devices:

No	Equipment	Trade Name	Model #
1	CPU (266MHz)	Intel	PRIXP420BB
2	Memory	ELPIDA	EDS1216AATA-75-E

Peripherals Devices:

No	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade Name	Data Cable	Power Cord
1	USB 2.0 HDD	ME-911	N/A	BSMI: D33031	PORTABLE	Shielded, 1.8m	N/A
2	USB 2.0 HDD	ME-911	N/A	BSMI: D33031	PORTABLE	Shielded, 1.8m	N/A
3	PS/2 Mouse	M071KC	443029438	BSMI: R41108 DoC	DELL	Shielded, 1.8m	N/A
4	PS/2 Keyboard	SK-8110	N/A	BSMI: T3A002 DoC	DELL	Shielded, 1.8m	N/A
5	Modem	1414	N/A	IFAXDM1414	ACEEX	Shielded, 1.1m	Unshielded, 1.8m
6	Modem	5JEG4033MKO	N/A	5RJTAI-35500-M5-E	TOP- SOLUTION	Shielded, 1.1m	Unshielded, 1.8m
7	Host PC	P Evo D510C	7308-KN8Z-0010	BSMI ID: 3912Q007	COMPAQ	Unshielded, 0.8m	Unshielded, 1.8m
8	Monitor	710V	GS17H9NXA05853A	BSMI: R33475 DoC	SAMSUNG	Shielded, 1.8m with two cores	Unshielded, 1.8m
9	Printer	C60	N/A	BSMI ID: 3902E006	EPSON	Shielded, 1.8m	Unshielded, 1.8m
10	Server PC	DCNE	CV8DH1S	BSMI: R33002	Dell	Unshielded, 20m	Unshielded, 1.8m
11	LAN Load X4	N/A	N/A	N/A	N/A	Unshielded, 1.0m	N/A

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

CCS Taiwan Hsintien Lab at No. 165, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan.

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform Electromagnetic compatibility tests are registered or accredited by the organizations listed in the following table which includes the recognized scope specifically.

This accredited organization maintains A2LA accreditation to ISO/IEC 17025 for the specific test listed in A2LA Certificate # 0824-01. The test results included in this report, however, are not covered by this accreditation.

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	CFR 47, FCC Part 15/18; AS/NZS 3548; VCCI V3; CNS 13438; CNS 13439; CNS 13783; CNS 14115; CISPR 11/EN 55011; CISPR 14-1/EN 55014-1; CISPR 15/EN 55015; CISPR 22/EN 55022; EN 50081-1/EN 61000-6-3; EN 50082-1/EN 61000-6-4; IEC/EN 61000-4-2, IEC/EN 61000-4-3, IEC/EN 61000-4-4, IEC/EN 61000-4-5, IEC/EN 61000-4-6, IEC/EN 61000-4-8, IEC/EN 61000-4-5, IEC/EN 61000-3-2, IEC/EN 61000-3-3; CISPR 24/EN 55024; CISPR 14-2/EN 55014-2; EN 50081-2/EN 61000-6-1; EN 50082-2/EN 61000-6-2.	ACCREDITED No. 0824-01
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 250366
Japan	VCCI	3/10 meter Open Area Test Sites and Line Conducted Test Room to perform conducted/radiated measurements	VCCI R-1434/1630~4 C-1511/ 1882
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, Cispr 16-1/2/3/4	N ELA 103
Taiwan	CNLA	47 CFR FCC Part 15 Subpart B, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 13438, AS/NZS 3548, VCCI, CNS 13022-1/2/3, EN 55022, EN 55013, EN 55014-1, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, ENV 50141, ENV 50142	Tering Laboratory 1108
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439	SL2-IN-E-0005 SL2-A1-E-0005 SL2-R1-E-0005 SL2-R2-E-0005
Canada	Industry Canada	RSS212, Issue 1	Canada IC 5742

Note: No part of this report may be used to claim or imply product endorsement by CNLA, A2LA or other government agency.

6 INSTRUMENT AND CALIBRATION

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 TEST AND MEASUREMENT EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective manual.

Open Area Test Site # I							
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE			
SITE NSA	CCS	I Site	N/A	10/14/2006			
MEASURE RECEIVER	SCHAFFNER	SCR3501	338	06/27/2006			
SPECTRUM ANALYZER	ADVANTEST	R3132	120900008	No Calibration Required			
ANTENNA	SCHAFFNER	CBL 6112B	2809	09/23/2006			
AMPLIFIER	SCHAFFNER	CPA9231A	3626	10/08/2006			
CABLE	BELDEN	9913	N-TYPE #I2	02/17/2007			
ATTENUATOR	MCL	UNAT-6	AT06-3	10/08/2006			
THERMO- HYGRO METER	TFA	N/A	NO.2	11/02/2006			
DECOUPLING NETWORK	FCC	F-201-DCN-5-6MM	22、24	08/24/2006			

Equipment Used for Emission Measurement

Note: The measurement uncertainty is less than +/- 3.36dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Conducted Emission Test Site # A							
EQUIPMENT	MFR	MODEL	SERIAL NUMBER	CAL. DUE			
TEST RECEIVER	R&S	ESHS20	840455/006	02/06/2007			
LISN (EUT)	SCHWARZBECK	NSLK 8127	8127382	01/02/2007			
LISN	SOLAR	8012-50-R-24-BNC	8305114	01/02/2007			
BNC CABLE	JYE BAO	RG-223/U	BNC A2	10/08/2006			
THERMO- HYGRO METER	ТОР	HA-202	9303-1	02/22/2007			
ISN	FCC	FCC-TLISN-T4	20166	07/13/2006			
ISN	FCC	FCC-TLISN-T8-02	20169	07/13/2006			

Note: The measurement uncertainty is less than +/- 2.83dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Power Harmonic & Voltage Fluctuation/Flicker Test Site (EN 61000-3-2&-3-3)					
Manufacturer/Type	Mode l No. Serial No.		Cal. Due		
Schaffner / Signal Conditioning Unit	CCN 1000-1	72122	12/01/2006		
Schaffner / 5KVA AC Power Source	$NSC \neq 1007$		No Calibration Required		
Protronix / Digital Power Meter	1201	201091	08/24/2006		

Equipment Used for Immunity Measurement

ESD Test Site (EN 61000-4-2)						
Manufacturer/TypeModel No.Serial No.Cal. Due						
Schaffner / ESD Simulator	NSG 438	129	04/24/2007			
Sato / Aneroid Barometer	7610-20	89090	08/29/2006			
TOP / Thermo-Hygro meter	HA-202	9303-1	02/22/2007			

Radiated Electromagnetic Field Immunity Test Site (EN 61000-4-3)					
Manufacturer/Type	Model No.	Serial No.	Cal. Due		
Calibration of Field	Chamber#RS	200604H/V-2	04/11/2007		
Agilent / Signal Generator	E4421B	MY43350597	05/16/2006		
AR / Electric Field Probe	FP6001	305650	03/15/2007		
Boonton / RF Voltmeter	9200B	328001AE	02/08/2007		
BNC / Function Generator	625A	625A 25451			
AR / Amplifier	100W1000M1	17564	No Calibration Required		
AR / Direction Coupler	DC6180A	312189	No Calibration Required		
AR / Broadband Antenna	AT1080	311819	No Calibration Required		
TOP / Thermo-Hygro meter	HA-202	9303-2	02/22/2007		

Fast Transients/Burst Test Site (EN 61000-4-4)						
Manufacturer/TypeModel No.Serial No.Cal. Due						
Schaffner / EFT Generator	EFT Generator BEST EMC V2.3		11/07/2006			
Schaffner / Capacitive Clamp	N/A	N/A	No Calibration Required			

Surge Immunity Test Site (EN 61000-4-5)						
Manufacturer/TypeModel No.Serial No.Cal. Due						
Schaffner / Surger Generator	BEST EMC V2.3	200031A024SC	11/07/2006			
Schaffner / Signal and Data Lines Coupling Network	CDN118	19328	No Calibration Required			

CS test (EN 61000-4-6)						
Manufacturer/TypeModel No.Serial No.C						
Schaffner / RF Generator	NSG 2070-1	1061	08/03/2006			
Schaffner / CDN	CDN M316	19600	08/02/2006			
Schaffner / CDN	CDN M216	19294	08/02/2006			
FCC / CDN	FCC-801-M3-16A	99122	08/02/2006			
Schaffner / EM Clamp	KEMZ 801	19227	02/19/2007			
Schaffner / CDN	CDN T002	15881	01/12/2007			
FCC / CDN	FCC-801-T8-RJ45	04025	06/23/2006			
Schaffner / Attenuator	INA2070-1	2061	No Calibration Required			
FCC / CDN	FCC-801-T4-RJ45	04031	08/02/2006			

Power Frequency Magnetic Field Immunity test (EN 61000-4-8)								
Manufacturer/TypeModel No.Serial No.Cal. Due								
Schaffner / Induction Coil Interface	INA 21141	6009	No Calibration Required					
Schaffner / 5KVA AC Power Source	NSG 1007	55131	No Calibration Required					
CHY/ TRMS Clamp Meter	932C	2K0900285	10/16/2006					
Sypris / Magnetic Field Meter	4080	0247	01/23/2007					

Voltage Dips/Short Interruption and Voltage Variation Immunity test (EN 61000-4-11)								
Manufacturer/TypeModel No.Serial No.Cal. Due								
Schaffner / Dips/Interruption/Variations Tester	BEST EMC V2.3	200031A024SC	11/07/2006					
Protronix / Digital Power Meter	1201	201091	08/24/2006					

7 LINE CONDUCTED & RADIATED EMISSION TEST

7.1 LIMIT

7.1.1 EN 55022

Maximum permissible level of Line Conducted Emission

FREQUENCY	Class A (dBuV)		Class B (dBuV)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Common Mode Conducted Emission (Telecommunication Ports)

CLASS A

FREQUENCY	Voltage Limit (dBuV)		Current Limit (dBuA)		
(MHz)	Quasi-peak Average		Quasi-peak	Average	
0.15 - 0.5	97 - 87 84 - 74		53 - 43	40 - 30	
0.5 - 30.0	87	74	43	30	

CLASS B

FREQUENCY	Voltage Limit (dBuV)		Current Limit (dBuA)	
(MHz)	Quasi-peak Average		Quasi-peak	Average
0.15 - 0.5	84 - 74 74 - 64		40 - 30	30 - 20
0.5 - 30.0	74	64	30	20

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 10 meter

FREQUENCY	Class A (dBuV/m)	Class B (dBuV/m)		
(MHz)	Quasi-peak	Quasi-peak		
30 - 230	40	30		
230 - 1000	47	37		

Note: The lower limit shall apply at the transition frequency.

7.1.2 EN 55011

Maximum permissible level of Mains terminal disturbance voltage (Conducted Emission)

CLASS A

FREQUENCY	Group 1		ENCY Group 1 Group 2		Group 2*	
(MHz)	Quasi-peak (dBuV)	Average (dBuV)	Quasi-peak (dBuV)	Average (dBuV)	Quasi-peak (dBuV)	Average (dBuV)
0.15 - 0.5	79	66	100	90	130	120
0.50 - 5.0	73	60	86	76	125	115
5.0 - 30.0	73	60	90 Decreasing l logarithm of 70	80 inearly with frequency to 60	115	105

Note: The lower limit shall apply at the transition frequency

Care should be taken to comply with leakage current requirements.

CLASS B

FREQUENCY	Group 1 & 2					
(MHz)	Quasi-peak (dBuV)	Average (dBuV)				
0.15 - 0.5	66 Decreasing linearly with logarithm of frequency to 56	56 Decreasing linearly with logarithm of frequency to 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: The lower limit shall apply at the transition frequency

Care should be taken to comply with leakage current requirements.

Maximum permissible level of Radiated Emission measured at 10 meter

	Measured o	on a test site	Measured in situation
FREQUENCY (MHz)	Group 1, class A	Group 1, class B	Group 1, class A Limits with measuring distance 30 m from exterior wall outside the building in which the equipment is situated
	Quasi-peak (dBuV/m)	Quasi-peak (dBuV/m)	Quasi-peak (dBuV/m)
0.15 - 30	Under consideration	Under consideration	Under consideration
30 - 230	40	30	30
230 - 1000	47	37	37

Note: The lower limit shall apply at the transition frequency.

7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION

7.2.1 EN 55022

Procedure of Preliminary Test

- The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55022.
- All I/O cables were positioned to simulate typical actual usage as per EN 55022.
- The test system with EUT received AC power, 230V/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	73	-29.50	Q	L1

Freq. = Emission frequency in MHz Read Level = Uncorrected Analyzer/Receiver reading Factor = Insertion loss of LISN + Cable Loss Level = Read Level + Factor Limit = Limit stated in standard Over Limit = Reading in reference to limit Ρ = Peak Reading 0 = Quasi-peak Reading = Average Reading Α L1 = Hot side I 2 = Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) - Limit (dBuV)

7.2.2 EN 55011

Procedure of Preliminary Test

- The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical actual usage as per EN 55011.
- The test equipment EUT installed received AC power, 230V/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.

- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and comp are reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	73	-29.50	Q	L1

Fre	eq.	:	= Emis	sion f	rec	que	ency	in M	1Hz	
D	1 T	1			1		1		•	

Read Level = Uncorrected Analyzer/Receiver reading

Factor = Insertion loss of LISN + Cable Loss

- Level = Read Level + Factor
- Limit = Limit stated in standard
- Over Limit = Reading in reference to limit
- P = Peak Reading
- Q = Quasi-peak Reading
- A = Average Reading
- L1 = Hot side
- L2 = Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) - Limit (dBuV)

7.3 TEST PROCEDURE OF COMMON MODE CONDUCTED EMISSION FOR TELECOMMUNICATION PORT

7.3.1 EN55022

- Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.
- The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.
- Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.
- Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- In case of measuring on the screened cable, the current limit shall be applied, otherwise the voltage limit should be applied.
- The following test mode(s) were scanned during the preliminary test:

Mode(s):

1.	10 Mbps
2.	100 Mbps

• After the preliminary scan, we found the following test mode(s) producing the highest emission level and test data of the worst case was recorded.

Mode: 2.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)
x.xx	62.95	0.55	63.50	87	-23.50	Q

Freq. = Emission frequency in MHz

Read Level = Uncorrected Analyzer/Receiver reading

- Factor = Insertion loss of ISN + Cable Loss
- Level = Read Level + Factor
- Limit = Limit stated in standard
- Over Limit = Reading in reference to limit
- P = Peak Reading
- Q = Quasi-peak Reading
- A = Average Reading

Calculation Formula

Over Limit(dB) = Level(dBuV) - Limit(dBuV)

7.4 TEST PROCEDURE OF RADIATED EMISSION

7.4.1 EN 55022

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55022.
- All I/O cables were positioned to simulate typical usage as per EN 55022.
- The EUT received AC power source, 230V/50Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No. extension cords shall be used to mains receptacle.
- The antenna was placed at 10 meter away from the EUT as stated in EN 55022. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

• Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Over Limit dB	Reading Type (P/Q/A)	Pol. (H/V)
x.xx	14.0	12.2	26.2	40	-13.8	Q	Н

Freq.	= Emission frequency in MHz
Read Level	= Uncorrected Analyzer/Receiver reading
Factor	= Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain
Level	= Read Level + Factor
Limit	= Limit stated in standard
Over Limit	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
Η	= Antenna Polarization: Horizontal
V	= Antenna Polarization: Vertical

Calculation Formula

Over Limit (dB) = Level (dBuV/m) – Limit (dBuV/m)

7.4.2 EN 55011

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical usage as per EN 55011.
- The EUT received AC power source, 230V/50Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. MHz	Read Level dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Over Limit dB	Reading Type (P/Q/A)	Pol. (H/V)
x.xx	14.0	12.2	26.2	40	-13.8	Q	Н

Freq.	= Emission frequency in MHz
Read Level	= Uncorrected Analyzer/Receiver reading
Factor	= Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain
Level	= Read Level + Factor
Limit	= Limit stated in standard
Over Limit	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
Н	= Antenna Polarization: Horizontal
V	= Antenna Polarization: Vertical

Calculation Formula

Over Limit (dB) = Level (dBuV/m) – Limit (dBuV/m)

7.5 TEST RESULTS

Line Conducted Emission

Model: GENE-1425

Temperature: 26°C

Test Results: Passed

Test Mode: Mode 1 Humidity: 75% RH Tested by: John Yen

(The chart below shows the highest readings taken from the final data.)

	Six Highest Conducted Emission Readings												
Frequency Range Investigated					150 kHz (to 30 MHz							
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)						
1.527	43.03	0.17	43.20	73.00	-29.80	Р	L1						
1.888	42.71	0.18	42.89	73.00	-30.11	Р	L1						
0.150	48.97	0.13	49.10	79.00	-29.90	Р	L2						
1.888	43.57	0.18	43.75	73.00	-29.25	Р	L2						
2.931	44.21	0.26	44.47	73.00	-28.53	Р	L2						
5.031	41.01	0.39	41.40	73.00	-31.60	Р	L2						

NOTE: The emission level was or more than 2dB below the Average limit, so no re-check anymore.

Common Mode Conducted Emission

Test Mode: Mode 2

Six Highest Conducted Emission Readings							
Frequency F	Range Investi	gated	150 kHz to 30 MHz				
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	
0.203	49.85	9.76	59.61	94.49	-34.88	Р	
2.664	50.27	9.78	60.05	87.00	-26.95	Р	
2.962	52.61	9.78	62.39	87.00	-24.61	Р	
3.276	50.87	9.78	60.65	87.00	-26.35	Р	
14.288	45.78	9.90	55.68	87.00	-31.32	Р	
22.298	46.69	9.97	56.66	87.00	-30.34	Р	

NOTE: The emission level was or more than 2dB below the Average limit, so no re-check anymore.

Radiated Emission

Model: GENE-1425

Temperature: 21°C

Test Results: Passed

Test Mode: Mode 1 Humidity: 51% RH Tested by: John Yen

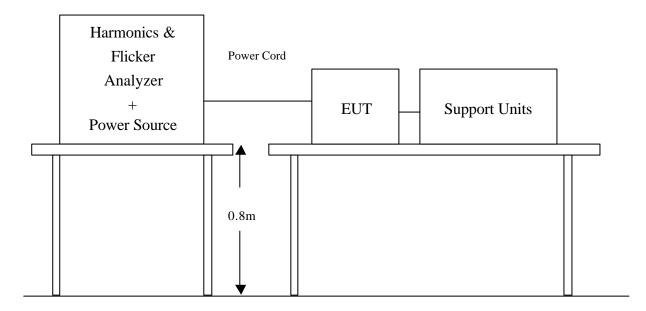
(The chart below shows the highest readings taken from the final data.)

Six Highest Radiated Emission Readings							
Frequency Range Investigated				30 MHz to 1000 MHz at 10m			
Freq (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Reading Type (P/Q/A)	Pol. (H/V)
38.471	36.26	-7.64	28.62	40.00	-11.38	Q	V
133.764	43.15	-9.35	33.80	40.00	-6.20	Q	Н
213.090	42.59	-10.48	32.11	40.00	-7.89	Q	Н
247.120	43.59	-7.58	36.01	47.00	-10.99	Q	Н
273.100	45.69	-6.88	38.81	47.00	-8.19	Q	Н
279.609	43.07	-6.75	36.32	47.00	-10.68	Q	Н
312.119	47.10	-5.97	41.13	47.00	-5.87	Q	Н

NOTE: None.

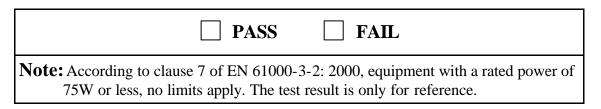
8 POWER HARMONICS TEST

Port	: AC Power Port
Basic Standard	: EN 61000-3-2 (2000)
Limits	: CLASS A ; CLASS D
Tested by	: N/A
Temperature	: N/A
Humidity	: N/A


Limit:

Limits for	Limits for Class A equipment			
Harmonics	Max. permissible			
Order	harmonics current			
n	А			
Od	d harmonics			
3	2.30			
3 5	1.14			
7	0.77			
9	0.40			
11	0.33			
13	0.21			
15<=n<=39	0.15x15/n			
Eve	en harmonics			
2	1.08			
4	0.43			
6	0.30			
8<=n<=40	0.23x8/n			

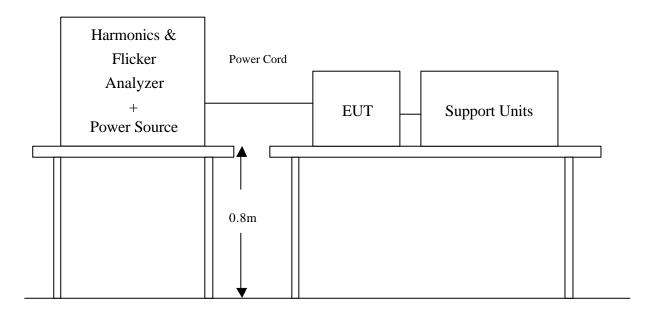
Limits for Class D equipment						
Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A				
	Odd Harmonics only	,				
3	3.4	2.30				
5	1.9	1.14				
7	1.0	0.77				
9	0.5	0.40				
11	0.35	0.33				
13	0.30	0.21				
15<=n<=39	3.85/n	0.15x15/n				


Block Diagram of Test Setup:

Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

Test Result :


9 POWER VOLTAGE FLUCTUATION / FLICKER TEST

Port	: AC Power Port
Basic Standard	: EN 61000-3-3 (1995 + A1: 2001)
Limits	: § of EN 61000-3-3
Teste d by	: John Yen
Temperature	: 19°C
Humidity	: 59%

Limit:

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T_{dt} means maximum time that dt exceeds 3.3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

Block Diagram of Test Setup:

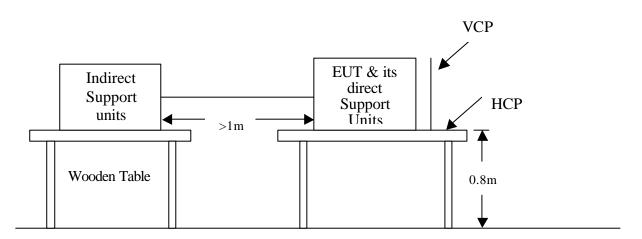
Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	RESULT
P _{st}	0.001	1.0	Pass
P _{lt}	0.001	0.65	Pass
T _{dt} (ms)	0.0	500	Pass
d _{max} (%)	0.00	4%	Pass
dc (%)	0.00	3.3%	Pass

Test Result: (See Appendix II for details)

Note: None.



10 ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port	:	Enclosure
Basic Standard	:	IEC/EN 61000-4-2
Test Level	:	±8 kV (Air Discharge)
		±4 kV (Contact Discharge)
		± 4 kV (Indirect Discharge)
Performance Criterior	1:	B (Standard Required)
Tested by	:	John Yen
Temperature	:	19°C
Humidity	:	59%

Block Diagram of Test Setup:

(The 470 k ohm resistors are installed per standard requirement.)

Ground Reference Plane

Test Procedure:

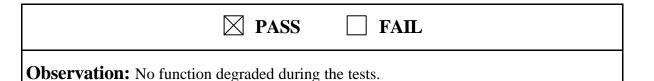
- 1. The EUT was located 0.1 m minimum from all sides of the HCP.
- 2. The indirect support units were located 1 m minimum away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- 3. As per the requirement of EN 55024; applying direct contact discharge at the sides other than front of EUT at minimum 50 discharges (25 positive and 25 negative) if applicable, can't be applied direct contact discharge side of EUT then the indirect discharge shall be applied. One of the test points shall be subjected to at least 50 indirect discharge (contact) to the front edge of horizontal coupling plane.
- 4. Other parts of EUT where it is not possible to perform contact discharge then selecting appropriate points of EUT for air discharge, a minimum of 10 single air discharges shall be applied.
- 5. The application of ESD to the contact of open connectors is not required.
- 6. The EUT direct connection units also need to be applied ESD at the port of EUT cable connected.
- 7. Putting a mark on EUT to show tested points. The following test condition was followed during the tests.

Note: As per IEC/EN 61000-4-2, two 470k bleed resistors cable is connected between the EUT and HCP during the test applicable for power ungrounded or battery operating unit only.

Amount of discharge	Voltage	Coupling	Result (Pass/Fail)
Min. 10 /Point	$\pm 8 \text{ kV}$	Air Discharge	No Discharge point
Min. 25 /Point	$\pm 4 \text{ kV}$	Contact Discharge	Pass
Min. 25 /Point	$\pm 4 \ kV$	Indirect Discharge HCP (Front)	Pass
Min. 25 /Point	$\pm 4 \text{ kV}$	Indirect Discharge VCP (Right)	Pass
Min. 25 /Point	$\pm 4 \ kV$	Indirect Discharge VCP (Left)	Pass
Min. 25 /Point	$\pm 4 \text{ kV}$	Indirect Discharge VCP (Back)	Pass

The electrostatic discharges were applied as follows:

**For the tested points to EUT, please refer to attached page. (Blue arrow mark for Contact Discharge and red arrow mark for Air Discharge)



Performance & Result:

Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.

Criterion B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

Criterion C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

The Tested Points of EUT

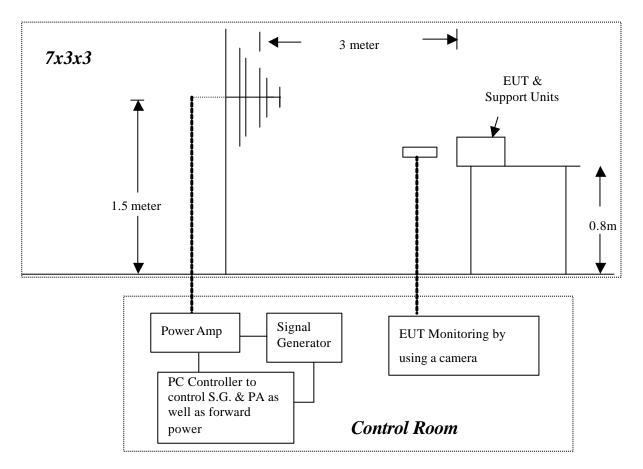
Photo 1 of 5

Photo 2 of 5

Photo 3 of 5

Photo 4 of 5

Photo 5 of 5



11 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port :	Enclosure
Basic Standard :	IEC/EN 61000-4-3
Requirements :	3 V/m / with 80% AM. 1kHz Modulation.
Performance Criterion:	A (Standard Required)
Tested by :	Jason Chia
Temperature :	18°C
Humidity :	55%
Pressure :	1012mbar

Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity.
- 2. Adjusting the cables to be exposed to the electromagnetic filed as possible.
- 3. Performing a Radiated Emission Scan in range of 80 to 1000 MHz prior to do RS test and records the more higher emission frequencies for the reference of RS test, due to antenna effectiveness.
- 4. Adjusting the monitoring camera to monitor the "H" message as clear as possible.
- 5. Setting the testing parameters of RS test software per IEC 61000-4-3.
- 6. Referring to the tested data of step 3 to performing the RS test from 80 to 1000 MHz.
- 7. Recording the test result in following table.
- 8. Changing the EUT to the other side and repeat step 3 to 6, until 4 sides of EUT were verified.

IEC 61000-4-3 Final test conditions:

Test level: 3V/mSteps: 1 % of fundamentalDwell Time: 3 sec

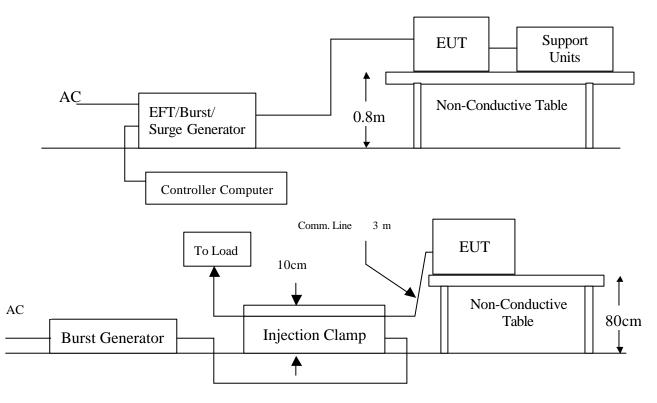
Range (MHz)	Field	Modulation	Polarity	Position (°)	Result (Pass/Fail)
80-1000	3V/m	Yes	Н	Front	Pass
80-1000	3V/m	Yes	V	Front	Pass
80-1000	3V/m	Yes	Н	Right	Pass
80-1000	3V/m	Yes	V	Right	Pass
80-1000	3V/m	Yes	Н	Back	Pass
80-1000	3V/m	Yes	V	Back	Pass
80-1000	3V/m	Yes	Н	Left	Pass
80-1000	3V/m	Yes	V	Left	Pass

Performance & Result:

- Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - **Criterion B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

Criterion C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

Observation: No function degraded during the tests.



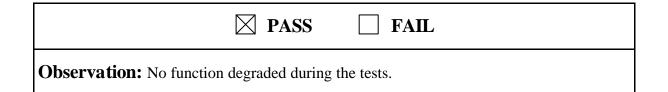
12 FAST TRANSIENTS/BURST IMMUNITY TEST

Port

:	AC Power Port and RJ45 P
:	IEC/EN 61000-4-4
:	\pm 1 kV for AC Power Port
	$\pm 0.5 kV$ for RJ45 Port
:	B (Standard Required)
:	John Yen
:	19°C
:	59%
:	1009mbar
	•••••••••••••••••••••••••••••••••••••••

Block Diagram of Test Setup:

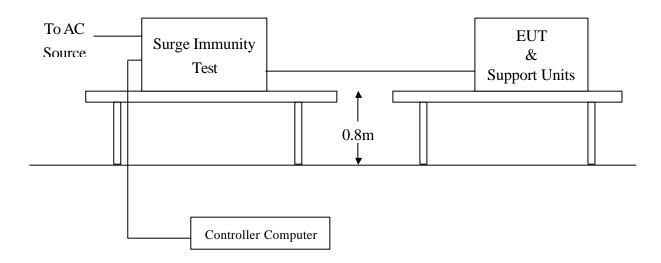
Test Procedure:


- 1. The EUT and support units were located on a wooden table 0.8 m away from ground reference plane.
- 2. A 1.0 meter long power cord was attached to EUT during the test.
- 3. The length of communication cable between communication port and clamp was keeping within 1 meter.
- 4. Injected test voltage to the EUT ports from minimum to standard request or client request.
- 5. Recorded the test result as shown in following table

Impulse Frequency : 5kHzTr/Th: 5/50nsBurst Duration: 15msBurst Period: 300ms

Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)
L	± 1	Direct	Pass
N	± 1	Direct	Pass
PE	± 1	Direct	Pass
L + N	± 1	Direct	Pass
L + PE	± 1	Direct	Pass
N + PE	± 1	Direct	Pass
L + N + PE	± 1	Direct	Pass
RJ45	± 0.5	Clamp	Pass

- Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - Criterion B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - **Criterion C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.



13 SURGE IMMUNITY TEST

Port	: AC Power Port
Basic Standard	: IEC/EN 61000-4-5
Requirements	: $\pm 1 \text{ kV}$ (Line to Line) for AC Power Port
	± 2 kV (Line to Ground) for AC Power Port
Performance Criteria	: B (Standard Required)
Tested by	: John Yen
Temperature	: 19°C
Humidity	: 59%
Pressure	: 1009mbar

Block Diagram of Test Setup:

Test Procedure:

1. The EUT and support units were located on a wooden table 0.8 m away from ground floor.

2. Injected test voltage to the EUT ports from minimum to standard request or client request.

3. Recorded the test result as shown in following table.

Voltage Waveform	: 1.2/50 <i>us</i>
Current Waveform	: 8/20 <i>u</i> s
Polarity	: Positive/Negative
Phase angle	: 0°, 90°, 270°
Number of Test	: 5

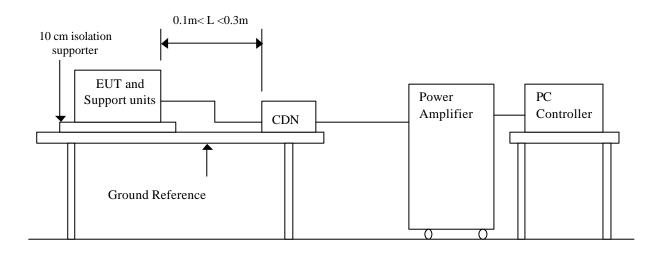
Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2	1	Positive	Capacitive	Pass
L1-PE	2	Positive	Capacitive	Pass
L2-PE	2	Positive	Capacitive	Pass
L1-L2	1	Negative	Capacitive	Pass
L1-PE	2	Negative	Capacitive	Pass
L2-PE	2	Negative	Capacitive	Pass

Performance & Result:

Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.

Criterion B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

Criterion C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


PASS	FAIL
Observation: Where normal functioning of I	AN can't be achieved because of the impact of
CDN on the EUT, no test be re	equired.

14 CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST

Port	:	AC Power Port and RJ45 Port
Basic Standard	:	IEC/EN 61000-4-6
Requirements	:	3V, with 80% AM. 1kHz Modulation.
Injection Method	:	CDN-M3 for AC Power Port
		CDN-T4 for RJ45 Port
Performance Criterion	:	A (Standard Required)
Tested by	:	Jason Chia
Temperature	:	18°C
Humidity	:	55%
Pressure	:	1012mbar

Block Diagram of Test Setup:

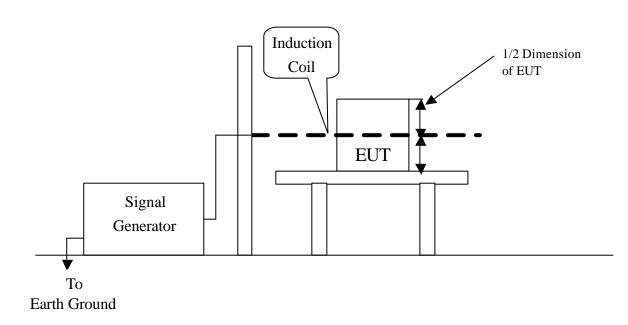
Test Procedure:

- 1. The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- 2. Set the testing parameters of CS test software as per IEC/EN 61000-4-6.
- 3. Recorded the test result in following table.

Frequency Range	: 0.15MHz-80MHz
Frequency Step	:1% of fundamental
Dwell Time	: 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	3V	Yes	Pass

- Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - Criterion B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 - **Criterion C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


PASS	FAIL
Observation: No function degraded during	g the tests.

15 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port	:	Enclosure
Basic Standard	:	IEC/EN 61000-4-8
Requirements	:	1 A/m
Performance Criterion	:	A (Standard Required)
Teste d by	:	N/A
Temperature	:	N/A
Humidity	:	N/A
Pressure	:	N/A

Block Diagram of Test Setup:

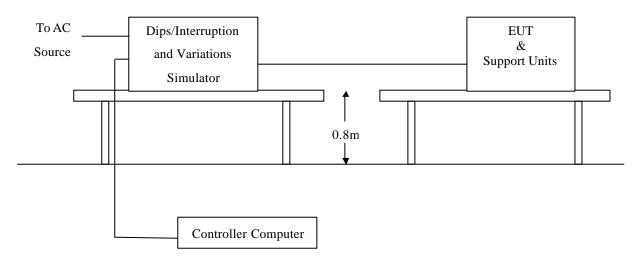
Test Procedure:

- 1. The EUT and support units were located on Ground Reference Plane with the interposition of a 0.1 m thickness insulation support.
- 2. Put the induction coil on horizontal direction. (X direction)
- 3. Recorded the test result as shown in following table.
- 4. Rotated the induction coil by 90° (Y direction) then repeat step 3.
- 5. Rotated the induction coil by 90° (Z direction) then repeat step 3.

Field Strengt Power Freq.: Orientation:			
Orientation	Field	Result (Pass/Fail)	Remark

- Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 - **Criterion B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- **Criterion C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

PASS FAIL
Observation: The EUT is not containing any component that is susceptible to a 50 Hz or 60 Hz magnetic field. Therefore, this requirement is not applicable to the
EUT.


16 VOLTAGE DIPS / SHORT INTERRUPTIONS

Port	:	AC Power Port		
Basic Standard	:	IEC/EN 61000-4-11		
Requirement	:	PHASE ANGLE 0, 45, 90, 135, 180, 225, 270, 315 degrees		
Test Interval	:	Min. 10 sec.		
Teste d by	:	John Yen		
Temperature	:	19°C		
Humidity	:	59%		
Pressure	:	1009mbar		

Voltage Dips	Test Level % U _T	Reduction (%)	Duration (periods)	Performance Criterion
	<5	>95	0.5	В
	70	30	25	С

Voltage Interruptions	Test Level % U _T	Reduction (%)	Duration (periods)	Performance Criterion
	<5	>95	250	С

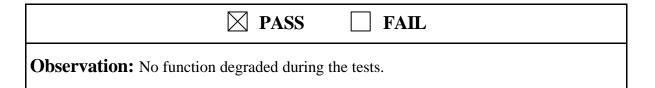
Block Diagram of Test Setup:

Test Procedure:

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Set the parameter of tests and then Performed the test software of test simulator.
- 3. Changed Condition to occur at 0 degree crossover point of the voltage waveform.
- 4. Recorded the test result in test record form.

The duration with a sequence of three dips/interruptions with interval of 10 sec. minimum (Between each test event)

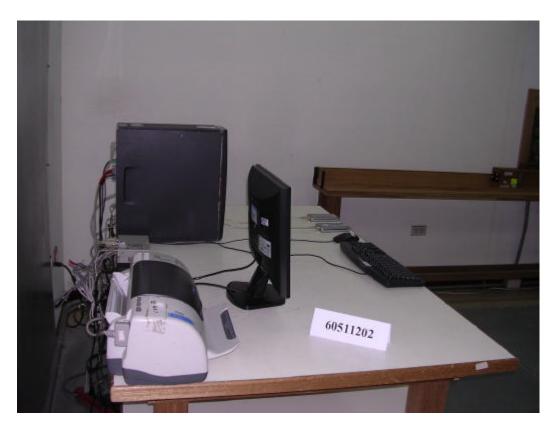
Voltage Dips:

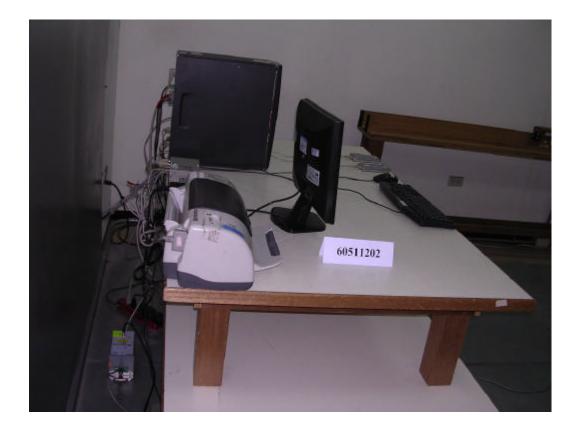

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Meet Performance Criterion	
0	100	0.5	Normal	А	
70	30	25	Normal	А	

Voltage Interruptions:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Meet Performance Criterion
0	100	250	EUT shut down, but EUT can be auto recovered after it restart.	С

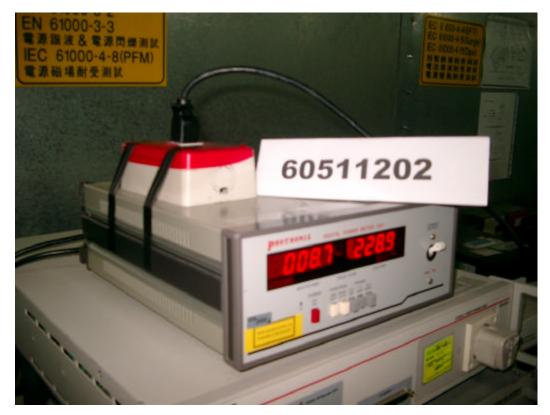
Note: "Normal" means no any functions degrade during and after the test.


- Criterion A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 Criterion B: The apparatus continues to operate as intended. In some cases the performance level may be replaced by a permissible loss of performance.
- **Criterion B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- **Criterion C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.


APPENDIX I - PHOTOGRAPHS OF TEST SETUP LINE CONDUCTED EMISSION TEST (EN 55022 / EN 55011)

COMMON MODE CONDUCTED EMISSION TEST

RADIATED EMISSION TEST (EN 55022)



RADIATED EMISSION TEST (EN 55011)

POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST

ELECTROSTATIC DISCHARGE TEST

RADIATED ELECTROMAGNETIC FIELD TEST

FAST TRANSIENTS/BURST TEST

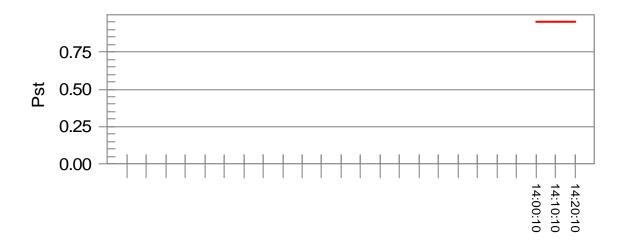
(IEC 61000-4-4 FOR I/O)

SURGE IMMUNITY TEST

CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST

(IEC 61000-4-6 FOR I/O)

VOLTAGE DIPS / INTERRUPTION TEST


APPENDIX II – TEST RESULT OF EN 61000-3-3

Test Result: Pass

Status: Test Completed

Psti and limit line

European Limits

Time is too short for Plt plot

Parameter values recorded during the test:

Vrms at the end of test (Volt):	229.89			
Highest dt (%):	0.00	Test limit (%):	3.14	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.14	Pass
Highest dmax (%):	0.00	Test limit (%):	3.80	Pass
Highest Pst (10 min. period):	0.001	Test limit:	0.950	Pass
Highest Plt (2 hr. period):	0.001	Test limit:	0.617	Pass