EMC COMPLIANCE TEST REPORT for #### **Industrial Panel PC** Trade Name : AAEON **Model Number**: AWS-8150 **Serial Number**: N/A **Report Number**: 010993-E **Date** : November 21, 2001 **Regulations**: See below | Standards | Results (Pass/Fail) | |---|---------------------| | EN 55022: 1994+ A1: 1995+ A2: 1997 (Group 1, Class A) | PASS | | EN 61000-3-2: 1995 + A1: 1998 + A2: 1998+A14: 2000 | PASS | | EN 61000-3-3: 1995 | PASS | | EN 61000-6-2:1999 | PASS | | - EN 61000-4-2:1995 | PASS | | - EN 61000-4-3:1995 | PASS | | - EN 61000-4-4:1995 | PASS | | - EN 61000-4-5:1995 | PASS | | - EN 61000-4-6:1996 | PASS | | - EN 61000-4-8:1993 | PASS | | - EN 61000-4-11:1994 | PASS | # Prepared for: # **AAEON Technology Inc.** 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C. Prepared by: # **C&C LABORATORY, CO., LTD.** #B1, 1st Fl., Universal Center, No. 183, Sec. 1, Tatung Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C. > TEL: (02)8642-1150 FAX: (02)8642-2256 This report shall not be reproduced, except in full, without the written approval of C&C Laboratory Co., Ltd. | EC-Declaration of Conformity | |---| | For the following equipment: | | Industrial Panel PC | | (Product Name) | | AWS-8150 / AAEON | | (Model Designation / Trade name) | | AAEON Technology Inc. | | (Manufacturer Name) | | 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C. | | (Manufacturer Address) | | is herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Laws of the Member States relating to Electromagnetic Compatibility Directive (89/336/EEC, Amended by 92/31/EEC, 93/68/EEC & 98/13/EC), For the evaluation regarding the Electromagnetic Compatibility (89/336/EEC, Amended by 92/31/EEC, 93/68/EEC& 98/13/EC), the following standards are applied: | | EN 55022: 1994+ A1: 1995+ A2: 1997 (Class A) EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 EN 61000-3-3: 1995 EN 61000-6-2:1999 EN 61000-4-2: 1995; EN 61000-4-3: 1995; EN 61000-4-4: 1995; EN 61000-4-5: 1995; EN 61000-4-6: 1996; EN 61000-4-8:1993 EN 61000-4-11: 1994 | | The following manufacturer / importer or authorized representative established within the EUT is | | responsible for this declaration: | | (Company Name) | | (Company Address) | | Person responsible for making this declaration: | | (Name, Surname) | | (Position / Title) | (Legal Signature) (Place) (Date) # TABLE OF CONTENTS | DESCRIPTION | PAGE | |--|------| | VERIFICATION OF COMPLIANCE | 5 | | GENERAL INFORMATION | 6 | | SYSTEM DESCRIPTION | 7 | | PRODUCT INFORMATION | 8 | | SUPPORT EQUIPMENT | 9 | | TEST FACILITY | 10 | | TEST EQUIPMENT | 11 | | SECTION 1 EN 55022(LINE CONDUCTED & RADIATED EMISSION) | 13 | | MEASUREMENT PROCEDURE & LIMIT (LINE CONDUCTED EMISSION TEST) | 13 | | MEASUREMENT PROCEDURE & LIMIT (RADIATED EMISSION
TEST) | 16 | | BLOCK DIAGRAM OF TEST SETUP | 19 | | SUMMARY DATA | 20 | | SECTION 2 EN61000-3-2 & EN 61000-3-3 (POWER HARMONICS | 24 | | & VOLTAGE FLUCTUATION/FLICKER) | | | BLOCK DIAGRAM OF TEST SETUP | 24 | | RESULT | 25 | | SECTION 3 EN 61000-4-2 (ELECTROSTATIC DISCHARGE) | 32 | | BLOCK DIAGRAM OF TEST SETUP | 32 | | TEST PROCEDURE | 33 | | PERFORMANCE & RESULT | 33 | | ESD TESTED POINT TO EUT | 34 | | SECTION 4 EN 61000-4-3 (RADIATED ELECTROM AGNETIC FIELD) | 35 | | BLOCK DIAGRAM OF TEST SETUP | 35 | | TEST PROCEDURE | 36 | | PERFORMANCE & RESULT | 37 | | | DESCRIPTION | PAGE | |-------------|---|------| | SECTION 5 | EN 61000-4-4 (FAST TRANSIENTS/BURST) | 38 | | BLOCK DIAGR | RAM OF TEST SETUP | 38 | | TEST PROCED | URE | 39 | | PEFORMANCE | E & RESULT | 39 | | SECTION 6 | EN 61000-4-5 (SURGE IMMUNITY) | 40 | | BLOCK DIAGR | RAM OF TEST SETUP | 40 | | TEST PROCED | URE | 41 | | PEFORMANCE | E & RESULT | 41 | | SECTION 7 | EN 61000-4-6 (CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS) | 42 | | BLOCK DIAGR | RAM OF TEST SETUP | 42 | | TEST PROCED | URE | 43 | | PEFORMANCE | E & RESULT | 43 | | | EN 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD) | 44 | | BLOCK DIAGR | RAM OF TEST SETUP | 44 | | TEST PROCED | URE | 45 | | PEFORMANCE | E & RESULT | 45 | | SECTION 9 | EN 61000-4-11 (VOLTAGE DIP/INTERRUPTION) | 46 | | BLOCK DIAGR | RAM OF TEST SETUP | 46 | | TEST PROCED | URE | 47 | | PEFORMANCE | E & RESULT | 47 | | APPENDIX 1 | PHOTOGRAPHS OF TEST SETUP EN 55022 TEST EN 61000-3-2 TEST EN 61000-3-3 TEST EN 61000-4-2 Test EN 61000-4-3 Test EN 61000-4-4 TEST | 48 | | APPENDIX 2 | EN 61000-4-5 TEST
EN 61000-4-6 TEST
EN 61000-4-11 TEST
PHOTOGRAPHS OF EUT | 59 | #### VERIFICATION OF COMPLIANCE **Equipment Under Test:** Industrial Panel PC **Trade Name:** AAEON **Model Number:** AWS-8150 Serial Number: N/A Applicant: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C. Manufacturer: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C. **Type of Test:** EMC Directive 89/336/EEC for CE Marking **Technical Standards:** EN 55022: 1994+ A1: 1995+ A2: 1997 (Group 1, Class A) EN 61000-3-2: 1995 + A1: 1998 + A2: 1998+A14: 2000 EN 61000-3-3: 1995 EN 61000-6-2:1999 > (EN 61000-4-2:1995;EN 61000-4-3:1995; EN 61000-4-4:1995; EN 61000-4-5:1995; EN 61000-4-6:1996; EN 61000-4-8:1993 EN 61000-4-11:1994) **File Number:** 010993-E **Date of test:** November $19 \sim 20, 2001$ **Deviation:** According to applicant's declaration this EUT is a class A product, and to be market in industrial environment only. Condition of Test Sample: Normal The above equipment was tested by C&C Laboratory Co., Ltd. for compliance with the requirements set forth in EMC Directive 89/336/EEC and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements. The test results of this report relate only to the tested sample identified in this report. Approved by Authorized Signatory: Kurt Chen / Q.A. Manager First Chen Accredited Lab. of NEMKO, A2LA, BSMI Listed Lab. of FCC, VCCI, MOC # **GENERAL INFORMATION** **Applicant:** AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C. **Contact Person:** Milo Wang Manufacturer: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R.O.C. **File Number:** 010993-E **Date of Test:** November $19 \sim 20, 2001$ **Equipment Under Test:** Industrial Panel PC **Model Number:** AWS-8150 **Serial Number:** N/A **Technical Standards:** EN 55022: 1994+ A1: 1995+ A2: 1997 (Group 1, Class A) EN 61000-3-2: 1995 + A1: 1998 + A2: 1998+A14: 2000 EN 61000-3-3: 1995 EN 61000-6-2:1999 > (EN 61000-4-2:1995;EN 61000-4-3:1995; EN 61000-4-4:1995; EN 61000-4-5:1995; EN 61000-4-6:1996; EN 61000-4-8:1993 EN 61000-4-11:1994) **Frequency Range** (EN 55022): 150kHz to 30MHz for Line Conducted Test 30MHz to 1000MHz for Radiated Emission Test Test Site C&C LABORATORY CO., LTD. No. 81-1, 210 Lane, Pa-de 2nd Road, Lu-Chu Hsiang Taoyuan, Taiwan, R. O. C. # **SYSTEM DESCRIPTION** # **EUT Test Program:** - 1. EMI test software was loaded and executed Windows mode. - 2. A communicated software was loaded and executed to communicate between EUT and remote side. - 3. EUT (Industrial Panel PC) sends and receives data from Notebook PC on remote side via LAN cable. - 4. Data was sent to Monitor filling the screen with upper case of "H" patterns. - 5. Test program sequentially exercised all related I/O's of EUT and sent "H" patterns to all applicable output ports of EUT. - 6. Repeat 3 to 5 Test program is self-repeating throughout the test. # PRODUCT INFORMATION **Housing Type:** Metal case **EUT Power Rating:** 85-265VAC, 47-63Hz, 6-4A **AC Power during Test** 230VAC/50Hz **Power Supply Manufacturer:** MAGIC **Power Supply Model Number:** MPI-925A **AC Power Cord Type:** Unshielded, 1.8m (Detachable) **CPU Manufacture:** Intel **Type:** Celeron 533 MHz OSC/Clock Frequencies: 14.318MHz, 24.576MHz, 133MHz Memory Capacity: Install: 64MB **FDD Manufacturer:** TEAC **Model:** FD-235HF **HDD Manufacturer:** Seagate **Model:** ST310215A CD-ROM Manufacturer: VINTECH Model: VIN-S24A Chassis Manufacturer: AAEON Model: AWS-8150 VGA Card Manufacturer: AAEON Model: MBC-268B Main Board Manufacturer: AAEON Model: PCA-6178 **LVDS Board Manufacturer:** AAEON **Model:** LVDS-T200 **15.0" LCD Panel Manufacturer:** Fujitsu Model: FLC38XGC6V-04 #### I/O Port of EUT | I/O PORT TYPES | Q'TY | TESTED WITH | |-----------------------|------|-------------| | 1) Serial Port | 1 | 1 | | 2) Video Port | 1 | 1 | | 3) PS/2 Keyboard Port | 1 | 1 | | 4) PS/2 Mouse Port | 1 | 1 | | 5) LAN Port | 1 | 1 | # SUPPORT EQUIPMENT | No. | Equipment | Model
| Serial
| FCC
ID | Trade
Name | Data
Cable | Power
Cord | |-----|-------------------------|---------------------|----------------|--------------|---------------|----------------------------------|--| | 1. | Monitor | CPD-G200 | 2716046 | DoC | SONY | Shielded,
1.8m
With a core | Unshielded,
1.5m | | 2. | Modem | 231AA | A25531083541 |
BFJ9D93108US | Hayes | Shielded,
1.8m | Unshielded,
1.8m | | 3. | PS/2
Keyboard | SK-2800C | B1C790BCPJCN6L | GYUR79SK | Compaq | Shielded,
1.8m | N/A | | 4. | PS/2 Mouse | M-CAA43 | LZA11750827 | DoC | Logitech | Shielded,
1.8m | N/A | | 5. | Notebook PC
(Remote) | Valiant
6380i9TD | N/A | FCC DoC | KDS | LAN Cable
Shielded,
1.8m | AC I/P:
Unshielded, 1.8m
DC O/P:
Unshielded, 1.8m | **Note:** All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test. **Grounding:** Grounding was in accordance with the manufacturer's requirements and conditions for the intended use. # **TEST FACILITY** **Location:** No. 81-1, 210 Lane, Pa-de 2nd Road, Lu-Chu Hsiang, Taoyuan, Taiwan, R. O. C. **Description:** There are Four 3/10m open area test sites and three line conducted labs for final test. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 1992 and CISPR 22/EN 55022 requirements. **Site Filing:** A site description is on file with the Federal Communications Commission, 7435 Oakland Mills Road, Columbia, MD 21046. Registration also was made with Voluntary Control Council for Interference (VCCI). **Site Accreditation:** Accredited by NEMKO (Authorization #: ELA 124) for EMC & A2LA (Certificate #: 824.01) for Emission Also accredited by BSMI for the product category of Information Technology Equipment. **Instrument Tolerance:** All measuring equipment is in accord with ANSI C63.4 and CISPR 22 requirements that meet industry regulatory agency and accreditation agency requirement. Ground Plane: Two conductive reference ground planes were used during the Line Conducted Emission, one in vertical and the other in horizontal. The dimensions of these ground planes are as below. The vertical ground plane was placed distancing 40 cm to the rear of the wooden test table on where the EUT and the support equipment were placed during test. The horizontal ground plane projected 50 cm beyond the footprint of the EUT system and distanced 80 cm to the wooden test table. For Radiated Emission Test, one horizontal conductive ground plane extended at least 1m beyond the periphery of the EUT and the largest measuring antenna, and covered the entire area between the EUT and the antenna. It has no holes or gaps having longitudinal dimensions larger than one-tenth of a wavelength at the highest frequency of measurement up to 1GHz. Site # 3 & # 4 Line Conducted Test Site: At Shielding Room # **TEST EQUIPMENT LIST** **Instrumentation:** The following list contains equipment used at C & C Laboratory, Co., Ltd. for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2-1988 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10kHz to 1.0 / 2.0 GHz. **Equipment used during the tests:** **Open Area Test Site:** #4 | Open Area Test Site # 4 | | | | | | | | | |-------------------------|--------------------------------------|---------------|------------|------------|------------|--|--|--| | EQUIPMENT | EQUIPMENT MFR MODEL SERIAL LAST CAL. | | | | | | | | | TYPE | | NUMBER | NUMBER | CAL. | DUE | | | | | Spectrum Analyzer | ADVANTEST | R3132 | 91700456 | 02/21/2001 | 02/20/2002 | | | | | EMI Test Receiver | R&S | ESVS10 | 846285/016 | 04/16/2001 | 04/15/2002 | | | | | Precision Dipole | SCHWAZBECK | VHAP | 998/999 | 05/17/2001 | 05/16/2002 | | | | | Precision Dipole | SCHWAZBECK | UHAP | 981/982 | 05/17/2001 | 05/16/2002 | | | | | Bilog Antenna | CHASE | CBL 6112B | 2462 | 01/16/2001 | 01/15/2002 | | | | | Turn Table | Chance most | N/A | N/A | N.C.R | N.C.R | | | | | Antenna Tower | Chance most | N/A | N/A | N.C.R | N.C.R | | | | | Controller | Chance most | N/A | N/A | N.C.R | N.C.R | | | | | RF Switch | ANRITSU | MP59B | M51067 | N.C.R | N.C.R | | | | | Site NSA | C&C Lab. | N/A | N/A | 11/24/2000 | 11/23/2001 | | | | **Conducted Emission Test Site:** #4 | Conducted Emission Test Site # 4 | | | | | | | | |---|------|---------|------------|------------|------------|--|--| | EQUIPMENT
TYPEMFR
MODEL
NUMBERSERIAL
NUMBERLAST
CAL.CAL. | | | | | | | | | EMI Test Receiver | R&S | ESHS10 | 843743/015 | 12/15/2000 | 12/14/2001 | | | | LISN | R&S | ESH2-Z5 | 848773/014 | 10/27/2001 | 10/26/2002 | | | | LISN | EMCO | 3825/2 | 9003/1382 | 02/08/2001 | 02/07/2002 | | | The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument. # TEST EQUIPMENT LIST | Power Harmonic & Voltage Fluctuation/Flicker Measurement (61000-3-2&-3-3) | | | | | | | |---|-------------------|--------|------------|------------|------------|--| | EQUIPMENT MFR MODEL SERIAL LAST CAI
TYPE NUMBER NUMBER CAL. | | | | | | | | Harmonic & Flicker
Tester | HAEFELY
TRENCH | PHF555 | 080 419-25 | 10/12/2001 | 10/11/2002 | | | ESD test (61000-4-2) | | | | | | | |--|-------------------|-----------|---------|------------|------------|--| | EQUIPMENT MFR MODEL SERIAL LAST CAL DUE NUMBER NUMBER CAL. | | | | | | | | ESD Generator | HAEFELY
TRENCH | PESD 1600 | H710203 | 09/01/2001 | 08/31/2002 | | | Radiated Electromagnetic Field immunity Measurement (61000-4-3) | | | | | | | | |---|--------|---------------------|------------|------------|------------|--|--| | EQUIPMENT | MFR | MFR MODEL SERIAL | | LAST | CAL DUE. | | | | TYPE | | NUMBER | NUMBER | CAL. | | | | | Signal Generator | Maconi | 2022D | 119246/003 | 08/20/2001 | 08/19/2002 | | | | Power Amplifier | M2S | A00181/ 1000 | 9801-112 | N/A | N/A | | | | Power Amplifier | M2S | AC8113/
800-250A | 9801-179 | N/A | N/A | | | | Power Antenna | EMCO | 93141 | 9712-1083 | N/A | N/A | | | | EM PROBE | GW | EMR-30 | L-0013 | 03/13/2001 | 03/12/2002 | | | | Fast Transients/Burst test (61000-4-4) | | | | | | | | |--|-------------------|---------------------|------------------|--------------|------------|--|--| | EQUIPMENT
TYPE | MFR | MODEL
NUMBER | SERIAL
NUMBER | LAST
CAL. | CAL DUE. | | | | Fast Transients/Burst | HAEFELY | PEFT- | 583 333-117 | 08/21/2001 | 08/20/2002 | | | | Generator Clamp | TRENCH
HAEFELY | JUNIOR
093 506.1 | 080 421.13 | N/A | N/A | | | | | TRENCH | 0,5,5,00.1 | 000 121.13 | 1,71 | 1,111 | | | | Surge Immunity test (61000-4-5) | | | | | | | | | | |---------------------------------|-------------------|-----------------|------------------|--------------|------------|--|--|--|--| | EQUIPMENT
TYPE | MFR | MODEL
NUMBER | SERIAL
NUMBER | LAST
CAL. | CAL DUE. | | | | | | Surge Tester | HAEFELY
TRENCH | PSUGER 4010 | 583 334-71 | 09/01/2001 | 08/31/2002 | | | | | | CDN | HAEFELY
TRENCH | IP6.2 | 148342 | 03/22/2001 | 03/21/2002 | | | | | | CDN | HAEFELY
TRENCH | DEC1A | 148050 | 01/17/2001 | 01/16/2002 | | | | | | CS test (61000-4-6) | | | | | | | | | |---------------------|--------|-----------------|------------------|--------------|------------|--|--|--| | EQUIPMENT
TYPE | MFR | MODEL
NUMBER | SERIAL
NUMBER | LAST
CAL. | CAL DUE. | | | | | Signal Generator | Maconi | 2022D | 119246/003 | 08/20/2001 | 08/19/2002 | | | | | CDN | MEB | M3 | 3683 | 09/14/2001 | 09/13/2002 | | | | | CDN | Lüthi | 801-M3 | 1879 | 03/05/2001 | 03/04/2002 | | | | | CDN | MEB | M2 | A3002010 | 04/17/2001 | 04/16/2002 | | | | | Power Amplifier | M2S | A00181/1000 | 9801-112 | N/A | N/A | | | | | Clamp | MEB | KEMZ-801 | 13 602 | N/A | N/A | | | | | Power Frequency Magnetic Field Immunity test (61000-4-8) | | | | | | | | | |--|-------------------|-----------------|------------------|--------------|------------|--|--|--| | EQUIPMENT
TYPE | MFR | MODEL
NUMBER | SERIAL
NUMBER | LAST
CAL. | CAL DUE. | | | | | TRIAX ELF Magnetic
Field Meter | F.W.BELL | 4090 | 9711 | 10/30/2001 | 10/29/2002 | | | | | Magnetic Field Tester | HAEFELY
TRENCH | MAG 100.1 | 080 938-01 | N/A | N/A | | | | | Voltage Dips/Short Interruption and Voltage Variation Immunity test (61000-4-11) | | | | | | | | |--|---------|--------------------|------------|------------|------------|--|--| | EQUIPMENT MFR MODEL SERIAL LAST CAL DU | | | | | | | | | TYPE | | NUMBER | NUMBER | CAL. | | | | | Dips/Interruption and | HAEFELY | HAEFELY PLINE 1610 | | 02/08/2001 | 02/07/2002 | | | | Variations Simulator | TRENCH | FLINE 1010 | 080 344-05 | 02/06/2001 | 02/07/2002 | | | # SECTION 1 EN 55022 (LINE CONDUCTED & RADIATED EMISSION) # MEASUREMENT PROCEDURE (PRELIMINARY LINE CONDUCTED EMISSION TEST) - 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2) Support equipment, if needed, was placed as per EN 55022. - 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022. - 4) The EUT received AC power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane. - 5) All support equipment received power from a second LISN
supplying power of 110VAC/60Hz. - 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7) Analyzer / Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes. - 8) During the above scans, the emissions were maximized by cable manipulation. - 9) The following test mode(s) were scanned during the preliminary test: #### Mode(s): - 1. 1024 x 768 Colors Resolution - 2. 800 x 600 Colors Resolution - 3. 640 x 480 Colors Resolution - 10) After the preliminary scan, we found the following test mode producing the highest emission level. ## Mode: 1. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing. # MEASUREMENT PROCEDURE (FINAL LINE CONDUCTED EMISSION TEST) - 1) EUT and support equipment was set up on the test bench as per step 10 of the preliminary test. - 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. - 3) The test data of the worst case condition(s) was reported on the Summary Data page. ## **Data Sample:** | Freq.
MHz | Q.P.
Raw
dBuV | Average
Raw
dBuV | Q.P.
Limit
dBuV | Average
Limit
dBuV | Q.P.
Margin
dB | Average
Margin
dB | Note | |--------------|---------------------|------------------------|-----------------------|--------------------------|----------------------|-------------------------|------| | X.XX | 43.95 | | 56 | 46 | -12.05 | -2.05 | L 1 | Freq. = Emission frequency in MHz Raw dBuV = Uncorrected Analyzer/Receiver reading Limit dBuV = Limit stated in standard Margin dB = Reading in reference to limit Note = Current carrying line of reading "---" = The emission level complied with the Average limits, with at least 2 dB margin, so no further recheck. # LINE CONDUCTED EMISSION LIMIT | Frequency | Maximum RF Line Voltage | | | |---------------|-------------------------|---------|--| | | Q.P. | AVERAGE | | | 150kHz-500kHz | 79dBuV | 66dBuV | | | 500kHz-5MHz | 73dBuV | 60dBuV | | | 5MHz-30MHz | 73dBuV | 60dBuV | | **Note:** The lower limit shall apply at the transition frequency. # MEASUREMENT PROCEDURE (PRELIMINARY RADIATED EMISSION TEST) - 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2) Support equipment, if needed, was placed as per EN 55022. - 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022. - 4) The EUT received AC power source from the outlet socket under the turntable. All support equipment received 110VAC/60Hz power from another socket under the turntable. - 5) The antenna was placed at some given distance away from the EUT as stated in EN 55022. The antenna connected to the analyzer via a cable and at times a pre-amplifier would be used. - 6) The Analyzer quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. - 7) The following test mode(s) were scanned during the preliminary test: #### Mode(s): - 1. 1024 x 768 Colors Resolution - 2. 800 x 600 Colors Resolution - 3. 640 x 480 Colors Resolution - 8) After the preliminary scan, we found the following test mode producing the highest emission level. #### Mode: 1. Then, the EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for final testing. # MEASUREMENT PROCEDURE (FINAL RADIATED EMISSION TEST) - 1) EUT and support equipment were set up on the turntable as per step 8 of the preliminary test. - 2) The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. - 3) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented. - 4) The test data of the worst case condition(s) was reported on the Summary Data page. ## **Data Sample:** | Freq. | Raw
Data | Corr.
Factor | Emiss.
Level | Limits | Margin | |-------|-------------|-----------------|-----------------|--------|--------| | (MHz) | (dBuV/m) | (dB) | (dBu | V/m) | (dB) | | xx.xx | 14.0 | 11.2 | 26.2 | 30 | -3.8 | Freq. = Emission frequency in MHz Raw Data (dBuV/m) = Uncorrected Analyzer / Receiver reading Corr. Factor (dB) = Correction factors of antenna factor and cable loss Emiss. Level = Raw reading converted to dBuV and CF added Limit dBuV/m = Limit stated in standard Margin dB = Reading in reference to limit # **RADIATED EMISSION LIMIT** | Frequency (MHz) | Distance (m) | Maximum Field Strength Limit (dBuV/m/ Q.P.) | |-----------------|--------------|---| | 30-230 | 10 | 40 | | 230-1000 | 10 | 47 | **Note:** The lower limit shall apply at the transition frequency. # **BLOCK DIAGRAM OF TEST SETUP** ### SYSTEM DIAGRAM OF CONNECTIONS BETWEEN EUT AND SIMULATORS EUT: Industrial Panel PC Trade Name: AAEON Model Number: AWS-8150 Power Cord: Unshielded, 1.8m # SUMMARY DATA (LINE CONDUCTED TEST) **Model Number:** AWS-8150 **Location:** Site # 4 Tested by: Jacky Wang **Test Mode:** Mode 1 **Test Results:** Passed **Temperature:** 23⁰C **Humidity:** 72%RH (The chart below shows the highest readings taken from the final data) | FREQ | Q.P. | AVG | Q.P. | AVG | Q.P. | AVG | NOTE | |--------|------|------|-------|-------|--------|--------|------| | MHz | RAW | RAW | Limit | Limit | Margin | Margin | | | | dBuV | dBuV | dBuV | dBuV | dB | dB | | | 0.185 | 46.9 | | 79.00 | 66.00 | -32.1 | | L1 | | 1.790 | 21.8 | | 73.00 | 60.00 | -51.2 | | L1 | | 3.920 | 33.6 | | 73.00 | 60.00 | -39.4 | | L1 | | 7.830 | 49.3 | | 73.00 | 60.00 | -23.7 | | L1 | | 11.750 | 51.4 | | 73.00 | 60.00 | -21.6 | | L1 | | 15.660 | 39.6 | | 73.00 | 60.00 | -33.4 | | L1 | | 0.185 | 47.3 | | 79.00 | 66.00 | -31.7 | | L2 | | 2.280 | 23.4 | | 73.00 | 60.00 | -49.6 | | L2 | | 3.920 | 32.8 | | 73.00 | 60.00 | -40.2 | | L2 | | 7.830 | 51.3 | | 73.00 | 60.00 | -21.7 | | L2 | | 11.750 | 52.4 | | 73.00 | 60.00 | -20.6 | | L2 | | 15.660 | 40.1 | | 73.00 | 60.00 | -32.9 | | L2 | L1 = Line One (Hot side) / L2 = Line Two (Neutral side) ^{**}NOTE: "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore. # SUMMARY DATA (RADIATED EMISSION TEST) **Model Number:** AWS-8150 **Location:** Site # 4 Tested by: Jacky Wang **Test Mode:** Mode 1 **Polar:** Vertical -- 10m **Detector Function:** Quasi-Peak **Test Results:** Passed **Temperature:** 23^oC **Humidity:** 72%RH (The chart below shows the highest readings taken from the final data) | Freq. | Raw
Data
(dBuV/m) | Corr.
Factor
(dB) | Emiss.
Level
(dBuV | | Margin
(dB) | |--------|-------------------------|-------------------------|---------------------------|------|----------------| | 64.43 | 30.6 | 6.7 | 37.3 | 40.0 | -2.7 | | 175.80 | 26.1 | 10.7 | 36.8 | 40.0 | -3.2 | | 180.20 | 24.2 | 10.6 | 34.8 | 40.0 | -5.2 | | 208.84 | 23.1 | 10.9 | 34.0 | 40.0 | -6.0 | | 302.74 | 26.2 | 15.1 | 41.3 | 47.0 | -5.7 | | 498.10 | 20.8 | 20.7 | 41.5 | 47.0 | -5.5 | | 898.50 | 18.4 | 24.4 | 42.8 | 47.0 | -4.2 | # SUMMARY DATA (RADIATED EMISSION TEST) **Model Number:** AWS-8150 **Location:** Site # 4 Tested by: Jacky Wang **Test Mode:** Mode 1 **Polar:** Horizontal -- 10m **Detector Function:** Quasi-Peak **Test Results:** Passed **Temperature:** 23⁰C **Humidity:** 72%RH (The chart below shows the highest readings taken from the final data) | Freq. (MHz) | Raw
Data
(dBuV/m) | Corr.
Factor
(dB) | Emiss.
Level
(dBuV | | Margin
(dB) | |-------------|-------------------------|-------------------------|---------------------------|------|----------------| | 64.30 | 25.0 | 6.8 | 31.8 | 40.0 | -8.2 | | 110.33 | 24.4 | 12.6 | 37.0 | 40.0 | -3.0 | | 175.13 | 24.1 | 10.7 | 34.8 | 40.0 | -5.2 | | 180.70 | 22.9 | 10.6 | 33.5 | 40.0 | -6.5 | | 334.25 | 27.5 | 15.8 | 43.3 | 47.0 | -3.7 | | 466.50 | 20.8 | 20.0 | 40.8 | 47.0 | -6.2 | | 598.34 | 19.6 | 21.9 | 41.5 | 47.0 | -5.5 | # SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION/FLICKER) ### POWER HARMONICS MEASUREMENT **Port** : AC mains **Basic Standard** : EN 61000-3-2 (1995 + A1: 1998 + A2: 1998) Limits : \Box CLASS A; \overline{V} CLASS D **Tester** : Jacky Wang **Temperature** : 30°C **Humidity** : 54% # **VOLTAGE FLUCTUATION/FLICER MEASUREMENT** **Port** : AC mains **Basic Standard** : EN 61000-3-3 (1995) **Limits** : §5 of EN 61000-3-3 **Tester** :
Jacky Wang **Temperature** : 30°C **Humidity** : 54% #### **Block Diagram of Test Setup:** ## **Result:** Please see the attached test data. ----- EN 61000-3-2 TEST REPORT 2001/11/20 08:28 PM ----- Unit: Industrial Panel PC Model No.: AWS-8150 Remarks: TEMP:30°C HUM:54% Operator: Jacky TEST SETUP ----- Test Freq.: 50.00 Hz. Test Voltage: 230.0 vac Waveform: SINE Test Time: 2.5 min. Classification: CLASS D Test Type: STEADY-STATE Prog. Zo Enabled: YES Prog. Zo: 0.000 Motor Driven with Phase Angle Control: NO Impedance selected: DIRECT Synthetic R+L Enabled: NO Resistance: 0.380 Ohms Inductance: 460.000 uH MAX WATTS:77.4W TEST DATA Result: PASS # Harmonic Current Results ----- | Hn | AMPS | LO Limit | HI Limit | Result | |----|-------|----------|----------|--------| | 0 | 0.000 | 0.000 | 0.000 | PASS | | 1 | 0.384 | NaN | NaN | PASS | | 2 | 0.003 | NaN | NaN | PASS | | 3 | 0.108 | 0.249 | 0.249 | PASS | | 4 | 0.001 | NaN | NaN | PASS | | 5 | 0.026 | 0.146 | 0.146 | PASS | | 6 | 0.001 | NaN | NaN | PASS | | 7 | 0.019 | 0.072 | 0.072 | PASS | | 8 | 0.001 | NaN | NaN | PASS | | 9 | 0.011 | 0.038 | 0.038 | PASS | | 10 | 0.000 | NaN | NaN | PASS | | 11 | 0.012 | 0.024 | 0.024 | PASS | | 12 | 0.000 | NaN | NaN | PASS | | 13 | 0.009 | 0.023 | 0.023 | PASS | | 14 | 0.000 | NaN | NaN | PASS | | 15 | 0.007 | 0.019 | 0.019 | PASS | | 16 | 0.000 | NaN | NaN | PASS | | 17 | 0.007 | 0.015 | 0.015 | PASS | | 18 | 0.000 | NaN | NaN | PASS | | 19 | 0.006 | 0.016 | 0.016 | PASS | | 20 | 0.000 | NaN | NaN | PASS | | 21 | 0.005 | 0.013 | 0.013 | PASS | |----|-------|-------|-------|------| | 22 | 0.000 | NaN | NaN | PASS | | 23 | 0.005 | 0.012 | 0.012 | PASS | | 24 | 0.000 | NaN | NaN | PASS | | 25 | 0.005 | 0.010 | 0.010 | PASS | | 26 | 0.000 | NaN | NaN | PASS | | 27 | 0.004 | 0.011 | 0.011 | PASS | | 28 | 0.000 | NaN | NaN | PASS | | 29 | 0.004 | 0.009 | 0.009 | PASS | | 30 | 0.000 | NaN | NaN | PASS | | 31 | 0.004 | 0.009 | 0.009 | PASS | | 32 | 0.000 | NaN | NaN | PASS | | 33 | 0.004 | 0.008 | 0.008 | PASS | | 34 | 0.000 | NaN | NaN | PASS | | 35 | 0.003 | 0.008 | 0.008 | PASS | | 36 | 0.000 | NaN | NaN | PASS | | 37 | 0.003 | 0.007 | 0.007 | PASS | | 38 | 0.000 | NaN | NaN | PASS | | 39 | 0.003 | 0.008 | 0.008 | PASS | | 40 | 0.000 | NaN | NaN | PASS | | | | | | | END OF REPORT ______ EN 61000-3-3 TEST REPORT 2001/11/20 09:28 PM ----- Unit: Industrial Panel PC Model No.: AWS-8150 (Manual Switch) Remarks: TEMP:30°C HUM:54% Operator: Jacky _____ TEST SETUP ----- Test Freq.: 50.00 Hz. Test Voltage: 230.0 vac Waveform: SINE Test Time: 10.0 min. Tshort: 10.0 min. Prog. Zo Enabled: YES Prog. Zo: 0.000 Voltage Change less than once per Hour: NO Impedance selected: DIRECT Synthetic R+L Enabled: NO Resistance: 0.380 Ohms Inductance: 460.000 uH TEST DATA ----- PASS Result: | | EUT Data | Limit | Resul t | Test Enabled | |----------------|----------|----------------|---------|--------------| | Pst max | 0.009 | 1.00 | PASS | true | | Plt max | 0.009 | 0.65 | PASS | true | | dc % | 0.00 | 3.00 | PASS | true | | dmax % | 0.00 | 4.00 | PASS | true | | d(t) sec. | 0.00 | 0.20 | PASS | true | | | | | | | | | Powe | er Source Data | | | | Source Pst max | 0.025 | 0.400 | PASS | true | END OF REPORT 3.00 PASS 0.03 % THD true _____ EN 61000-3-3 TEST REPORT 2001/11/20 09:10 PM ----- Unit: Industrial Panel PC Model No.: AWS-8150 (Continue) Remarks: TEMP:30°C HUM:54% Operator: Jacky _____ TEST SETUP ----- Test Freq.: 50.00 Hz. Test Voltage: 230.0 vac Waveform: SINE Test Time: 10.0 min. Tshort: 10.0 min. Prog. Zo Enabled: YES Prog. Zo: 0.000 Voltage Change less than once per Hour: NO Impedance selected: DIRECT Synthetic R+L Enabled: NO Resistance: 0.380 Ohms Inductance: 460.000 uH TEST DATA Result: PASS | | EUT Data | Limit | Result | Test Enabled | |----------------|----------|---------------|--------|--------------| | Pst max | 0.009 | 1.00 | PASS | true | | Plt max | 0.009 | 0.65 | PASS | true | | dc % | 0.00 | 3.00 | PASS | true | | dmax % | 0.00 | 4.00 | PASS | true | | d(t) sec. | 0.00 | 0.20 | PASS | true | | | Powe | r Source Data | | | | Source Pst max | 0.025 | 0.400 | PASS | true | | % THD | 0.02 | 3.00 | PASS | true | END OF REPORT # **SECTION 3** EN 61000-4-2 (ELECTROSTATIC DISCHARGE) # ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST Port : Enclosure **Basic Standard**: EN 61000-4-2 **Requirements** : ±8kV (Air Discharge) (Customer requested) ±4kV (Contact Discharge) ±4kV (Indirect Discharge) **Performance Criteria**: B (Standard Required) **Tested by** : Jacky Wang **Temperature/Humidity:** 28^oC /51% # **Block Diagram of Test Setup:** (The 470 k ohm resistors are installed per standard requirement) Ground Reference Plane ## **Test Procedure:** - 1. The EUT was located 0.1 m minimum from all side of the HCP. - 2. The support units were located 1 m minimum away from the EUT. - 3. A scroll 'H' test program was loaded and executed in Windows mode. - 4. The EUT sent above message to EUT and related peripherals through the test. - 5. Active the communication function if the EUT with such port(s). - 6. As per the requirement of EN 55024; applying direct contact discharge at the sides other than front of EUT at minimum 50 discharges (25 positive and 25 negative) if applicable, can't be applied direct contact discharge side of EUT then the indirect discharge shall be applied. One of the test points shall be subjected to at least 50 indirect discharge (contact) to the front edge of horizontal coupling plane. - 7. Other parts of EUT where it is not possible to perform contact discharge then selecting appropriate points of EUT for air discharge, a minimum of 10 single air discharges shall be applied. - 8. The application of ESD to the contact of open connectors is not required. - 9. Putting a mark on EUT to show tested points. The following test condition was followed during the tests. The electrostatic discharges were applied as follows: | Amount of Discharges | Voltage | Coupling | Result (Pass/Fail) | |----------------------|---------|--------------------------------|--------------------| | Mini 25 /Point | ±4kV | Contact Discharge | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge HCP (Front) | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Left) | Pass | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Back) | N/A | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Right) | Pass | | Mini 10 /Point | ±8kV | Air Discharge | Pass | ^{**} The tested points to EUT, please refer to attached pages. (Blue arrow mark for Contact Discharge, Red arrow mark for Air Discharge) #### **Performance & Result:** | Observat | ion: No any function degraded during the tests. | | | |---------------|--|--|--| | | V PASS | | | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | | | # The Tested Points of EUT # Photo 1 of 2 Photo 1 of 2 # SECTION 4 EN 61000-4-3 (RADIATED ELECTROMAGNETIC FIELD) #### RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST **Port** : Enclosure **Basic Standard**: EN 61000-4-3 **Requirements** : 10 V/m, with 80% AM. 1kHz Modulation. **Performance Criteria**: A (Standard Required) **Tested by** : Jacky Wang **Temperature** : 28°C **Humidity** : 51% # **Block Diagram of Test Setup:** #### **Test Procedure:** - 1. The EUT was located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity. The support units were located outside of the uniformity area, but the cable(s) connected with EUT were exposed to the calibrated field as per EN 61000-4-3. - 2. A scroll 'H' messages were displayed on part of screen of EUT and an enlarged 'H' characters were displayed on the other part of screen of EUT. - 3. Adjusting the monitoring camera to monitor the 'H' message as clear as possible. - 4. Setting the testing parameters of RS test software per EN 61000-4-3. - 5. Performing the pre-test at each side of with double specified level (6V/m) at 4% steps. - 6. From the result of pre-test in step 5, choice the worst side of EUT for final test from 80 MHz to 1000 MHz at 1% steps. - 7. Recording the test result in following table. - 8. It is not necessary to perform test as per annex A of EN 55024:1998 if the EUT doesn't belong to TTE product. ### **Preliminary test conditions:** Test level : 6V/m Steps : 4 % of fundamental; Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Polarity | Position (°) | Result (Pass/Fail) | |-------------|-------|------------|----------|--------------|--------------------| | 80-1000 | 10V | Yes | Н | Front | Pass | | 80-1000 | 10V | Yes | V | Front | Pass | | 80-1000 | 10V | Yes | Н | Right | Pass | | 80-1000 | 10V | Yes | V | Right | Pass | | 80-1000 | 10V | Yes | Н | Back | Pass | | 80-1000 | 10V | Yes | V | Back | Pass | | 80-1000 | 10V | Yes | Н | Left | Pass | | 80-1000 | 10V |
Yes | V | Left | Pass | #### **Final test conditions:** Test level : 3V/m Steps : 1 % of fundamental; Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Polarity | Position (°) | Result (Pass/Fail) | |-------------|-------|------------|----------|--------------|--------------------| | 80-1000 | 10V | Yes | Н | Front | Pass | | 80-1000 | 10V | Yes | V | Front | Pass | # Performance & Result: | V Criteria A: | performance or loss of function is allowed below a performance level specified | | | | |---|--|--|--|--| | | by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | | | | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | | | | Criteria C: | Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls. | | | | | | V PASS FAILED | | | | | Observation: No any function degraded during the tests. | | | | | #### SECTION 5 EN 61000-4-4 (FAST TRANSIENTS/BURST) #### FAST TRANSIENTS/BURST IMMUNITY TEST **Port** : On Power Supply Lines and Data Cable **Basic Standard**: EN 61000-4-4 **Requirements** : ±2kV for Power Supply Line ±1kV for Data Cable **Performance Criteria**: B (Standard require) **Tested by** : Jacky Wang **Temperature** : 27°C **Humidity** : 50% #### **Block Diagram of Test Setup:** ### **Test Procedure:** - 1. The EUT and support units were located on a wooden table 0.8 m away from ground reference plane. - 2. A 1.0 meter long power cord was attached to EUT during the test. - 3. The length of communication cable between communication port and clamp was keeping within 1 meter. - 4. A test program was loaded and executed in Windows mode. - 5. The data was sent to and monitor (via EUT), filling the screens with upper case of "H" patterns. - 6. The test program exercised related support units sequentially. - 7. Repeating step 3 to 6 through the test. - 8. Recording the test result as shown in following table. #### **Test conditions:** Impulse Frequency: 5kHz Tr/Th: 5/50ns Burst Duration: 15ms Burst Period: 3Hz | Buist I thou. 3112 | | | | |--------------------|------------|---------------|--------------------| | Inject Line | Voltage kV | Inject Method | Result (Pass/Fail) | | L1 | ±2 | Direct | Pass | | N | ±2 | Direct | Pass | | PE | ±2 | Direct | Pass | | L1 + N | ±2 | Direct | Pass | | L1 + PE | ±2 | Direct | Pass | | N + PE | ±2 | Direct | Pass | | L1 + N + PE | ±2 | Direct | Pass | | LAN Cable | ±1 | Clamp | Pass | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified | |---------------|---| | Criteria B: | by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | | Criteria C: | During the test, degradation of performance is however allowed.
Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | V PASS FAILED | | Observat | ion: No any function degraded during the tests. | ## **SECTION 6** EN 61000-4-5 (SURGE IMMUNITY) #### **SURGE IMMUNITY TEST** Port : Power Cord Basic Standard : EN 61000-4-5 **Requirements** : +/- 1kV (Line to Line) : +/- 2kV (Line to Ground) **Performance Criteria:** B (Standard require) **Tester** : Jacky Wang **Temperature** : 27°C **Humidity** : 50 % #### **Block Diagram of Test Setup:** #### **Test Procedure:** - 1. The EUT was located 0.1 m minimum from all side of the HCP. - 2. The support units were located 1 m minimum away from the EUT. - 3. A scroll H test program was loaded and executed in Windows mode. - 4. The PC sent above message to EUT and related peripherals through the test. - 5. Selecting appropriate points of EUT for discharge and put a mark on EUT to show tested points. - 6. The following test condition was followed during the tests. #### **Test conditions:** Voltage Waveform : 1.2/50 us Current Waveform : 8/20 us Polarity : Positive/Negative Phase angle : 0°, 90°, 270° Number of Test : 5 | Coupling Line | Voltage (kV) | Polarity | Coupling Method | Result (Pass/Fail) | |---------------|--------------|----------|-----------------|--------------------| | L1-L2 | 1 | Positive | Capacitive | Pass | | L1-PE | 2 | Positive | Capacitive | Pass | | L2-PE | 2 | Positive | Capacitive | Pass | | L1-L2 | 1 | Negative | Capacitive | Pass | | L1-PE | 2 | Negative | Capacitive | Pass | | L2-PE | 2 | Negative | Capacitive | Pass | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | |---------------|--| | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | V PASS FAILED | | Observat | ion: No any function degraded during the tests. | # SECTION 7 EN 61000-4-6 (CONDUCTED DISTURBANCE/INDUCED BY RADIO-FREQUENCY FIELD) **Port** : Power cord and LAN Cable **Basic Standard**: EN 61000-4-6 **Requirements** : 10 V with Modulated **Injection Method** : CDN-M3 for Power Cord EM-Clamp for LAN Cable **Tested by** : Jacky Wang **Performance Criteria**: A (Standard require) **Temperature** : 27C **Humidity** : 50% ### **Block Diagram of Test Setup:** #### **Side View:** #### **Top View:** 10 cm isolation supporter #### **Test Procedure:** - 1. The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly. - 2. A 'H' messages were displayed on EUT. - 3. Adjusting the monitoring camera to monitor the H message as clear as possible. - 4. Setting the testing parameters of CS test software per EN 61000-4-6. - 5. Recording the test result in following table. #### **Test conditions:** Frequency Range : 0.15MHz-80MHz Frequency Step : 1% of fundamental Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Result (Pass/Fail) | |-------------|-------|------------|--------------------| | 0.15-80 | 10V | Yes | Pass | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified | | | | |---------------|--|--|--|--| | | by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | | | | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | | | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | | | | V PASS FAILED | | | | | Observat | ion: No
any function degraded during the tests. | | | | # SECTION 8 EN 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST) **Port** : Enclosure **Basic Standard**: EN 61000-4-8 **Requirements** : 30 A/m **Performance Criteria**: A (Standard Required) Temperature: 27° CHumidity: 50% #### **Block Diagram of Test Setup:** #### **Test Procedure:** - The EUT and support units were located on Ground Reference Plane with the interposition of a 0.1 m thickness insulation support. - 2. Putting the induction coil on horizontal direction.(X direction) - A test program was loaded and executed in Windows mode. - The data was sent to the screen of EUT and filling the screen with upper case of "H" patterns. - 4. 5. The test program exercised related support units sequentially. - Repeating step 3 to 5 through the test. 6. - Recording the test result as shown in following table. 7. - Rotating the induction coil by 90° (Y direction) then repeat step 3 to 7. Rotating the induction coil by 90° again (Z direction) then repeat step 3 to 7. #### *. Test conditions: Field Strength: 30A/m Power Freq.: 50Hz Orientation: X, Y, Z | Orientation | Field | Result (Pass/Fail) | Remark | |-------------|-------|--------------------|--------| | X | 30A | Pass | | | Y | 30A | Pass | | | Z | 30A | Pass | | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | | | | |---|--|--|--|--| | ☐ Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | | | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | | | | V PASS FAILED | | | | | Observation: No any function degraded during the tests. | | | | | # SECTION 9 EN 61000-4-11 (VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS) #### **VOLTAGE DIPS / SHORT INTERRUPTIONS** **Port** : AC mains **Basic Standard** : EN 61000-4-11 (1994) **Requirement** : PHASE ANGLE 0, 45, 90, 135, 180, 225, 270, 315 degrees | Voltago | Test Level
% U _T | Reduction (%) | Duration | Performance
Criteria | |-----------------|--------------------------------|---------------|----------------|-------------------------| | Voltage
Dips | 70 T | 30 | 10ms | В | | | 40 | 60 | 100 and 1000ms | С | | X 7-14 | Test Level | Reduction | Duration | Performance | |---------------|-------------------|-----------|----------------|-------------| | Voltage | $\%~\mathrm{U_T}$ | (%) | | Criteria | | Interceptions | <5 | >95 | 250(periods) | С | Test Interval : Min. 10 sec. Tester : Jacky Wang **Temperature** : 27°C **Humidity** : 50% ## **Block Diagram of Test Setup:** #### **Test Procedure:** - 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor. - 2. A test program was loaded and executed in Windows mode. - 3. The data was sent to Monitor filling the screens with upper case of "H" patterns. - 4. The test program exercised related support units sequentially. - 5. Setting the parameter of tests and then Perform the test software of test simulator. - 6. Conditions changes to occur at 0 degree crossover point of the voltage waveform. - 7. Repeating step 3 to 4 through the test. - 8. Recording the test result in test record form. #### **Test conditions:** The duration with a sequence of three dips/interruptions with interval of 10 s minimum (Between each test event) #### **Voltage Dips:** | Test Level | Reduction | Duration | Observation | Meet Performance | |------------------|-----------|------------|-------------|------------------| | % U _T | (%) | (periods) | | Criteria | | 70 | 30 | 0.5(10ms) | Normal | A | | 40 | 60 | 5(100ms) | Normal | A | | 40 | 60 | 50(1000ms) | Normal | A | **Voltage Interruptions:** | Test Level | Reduction | Duration | Observation | Meet Performance | |------------------|-----------|------------|--------------------------|------------------| | % U _T | (%) | (periods) | | Criteria | | 0 | 100 | 250 | EUT shut down, but can | С | | | | (5000mg) | be recovered by manual, | | | | | (30001118) | as the events disappear. | | **Normal:** No any functions degrade during and after the test. | Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | |-------------|--| | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | V PASS FAILED | ## **APPENDIX 1** ## PHOTOGRAPHS OF TEST SETUP ## **LINE CONDUCTED EMISSION TEST (EN 55022)** ## **RADIATED EMISSION TEST (EN 55022)** # POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST (EN 61000-3-2, EN 61000-3-3) ## **ELECTROSTATIC DISCHARGE TEST (EN 61000-4-2)** ## **RADIATED ELECTROMAGNETIC FIELD (EN 61000-4-3)** FAST TRANSIENTS/BURST TEST (EN 61000-4-4) **SURGE IMMUNITY TEST (EN 61000-4-5)** # CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (EN 61000-4-6) POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (EN 61000-4-8) ## **VOLTAGE DIPS / INTERRUPTION TEST (EN 61000-4-11)** ## **APPENDIX 2** ## PHOTOGRAPHS OF EUT ## Front view of EUT Back view of EUT Open View of EUT