EMC COMPLIANCE TEST REPORT **FOR** **Display Monitor** **MODEL: AMB-280A/AT** **REPORT NUMBER: 01E9606** ISSUE DATE: July 23, 2001 Prepared for AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. Prepared by COMPLIANCE ENGINEERING SERVICES, INC. No. 199, CHUNG SHENG ROAD HSIN TIEN CITY, TAIPEI, TAIWAN R.O.C. TEL: (02) 2217-0894 FAX: (02) 2217-1254 U.S.A.: P.O.BOX 612650, SAN JOSE, CA 95161-2650 ## EC-Declaration of Conformity | For the following equipme
Display Monitor | nt: | | |--|---|---| | (Product Name) AMB-280A/AT | | | | (Model Designation / Trade N/A | name) | | | (Manufacturer Name) AAEON Technology Inc. | | | | (Manufacturer Address)
5F, No. 135, Lane 235, Page | Chiao Rd., Hsin-Tien City, T | aipei, Taiwan, R. O. C. | | Approximation of the Law (89/336/EEC, Amended by | s of the Member States relating 92/31/EEC, 93/68/EEC & 98 illity (89/336/EEC, Amended 1 | et out in the Council Directive on the 1g to Electromagnetic Compatibility Directive 1g/13/EC), For the evaluation regarding the 1gby 92/31/EEC, 93/68/EEC & 98/13/EC), the | | EN 61000-3-3: 199 EN55024: 1998 IEC 61000-4-2: 199 IEC 61000-4-5: 199 | 95 + A2: 2000; IEC 61000-4-3
95; IEC 61000-4-6: 1996: IEC
er / importer or authorized rep | 14: 2000
3: 1995; IEC 61000-4-4: 1995;
61000-4-8: 1993, IEC 61000-4-11: 1994
resentative established within the EUT is | | (Company Name) | | | | (Company Address) | | | | Person responsible for mal | king this declaration: | | | (Name, Surname) | | | | (Position / Title) | | | | (Place) | (Date) | (Legal Signature) | ## **TABLE OF CONTENTS** | DESCRIPTION | PAGE | |---|------| | VERIFICATION OF COMPLIANCE | 3 | | GENERAL INFORMATION | 4 | | SYSTRM DESCRIPTION | 5 | | PRODUCT INFORMATION | 6 | | SUPPORT EQUIPMENT | 7 | | TEST EQUIPMENT | 8 | | SECTION 1 EN 55022(LINE CONDUCTED & RADIATED EMISSION) | 11 | | MEASUREMENT PROCEDURE & LIMIT (LINE CONDUCTED EMISSION TEST) | 12 | | MEASUREMENT PROCEDURE & LIMIT (RADIATED EMISSION TEST) | 14 | | BLOCK DIAGRAM OF TEST SETUP | 17 | | SUMMARY DATA | 18 | | SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION/FLICKER) | 21 | | BLOCK DIAGRAM OF TEST SETUP | 21 | | RESULT | 21 | | SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE) | 32 | | BLOCK DIAGRAM OF TEST SETUP | 32 | | TEST PROCEDURE | 33 | | PERFORMANCE & RESULT | 33 | | SECTION 4 IEC 61000-4-3 (RADIATED ELECTROM AGNETIC FIELD) | 34 | | BLOCK DIAGRAM OF TEST SETUP | 34 | | TEST PROCEDURE | 35 | | PERFORMANCE & RESULT | 36 | | SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST) | 37 | | BLOCK DIAGRAM OF TEST SETUP | 37 | | TEST PROCEDURE | 38 | | PERFORMANCE & RESULT | 38 | | DESCRIPTION | PAGE | |---|-------| | SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY) | 39 | | BLOCK DIAGRAM OF TEST SETUP | 39 | | TEST PROCEDURE | 40 | | PERFORMANCE & RESULT | 40 | | SECTION 7 IEC 61000-4-6 (CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS) | 41 | | BLOCK DIAGRAM OF TEST SETUP | 41 | | TEST PROCEDURE | 42 | | PERFORMANCE & RESULT | 43 | | SECTION 8 IEC 61000-4-8 (Power Frequency Magnetic Field)) | 44 | | BLOCK DIAGRAM OF TEST SETUP | 44 | | TEST PROCEDURE | 45 | | PERFORMANCE & RESULT | 46 | | SECTION 9 IEC 61000-4-11 (VOLTAGE DIP/INTERRUPTION) | 47 | | BLOCK DIAGRAM OF TEST SETUP | 47 | | TEST PROCEDURE | 48 | | PERFORMANCE & RESULT | 48 | | APPENDIX 1 PHOTOGRAPHS OF TEST SETUP | 49 | | EN 55022 TEST EN 61000-3-2 TEST EN 61000-3-3 TEST IEC 61000-4-2 TEST IEC 61000-4-3 TEST IEC 61000-4-4 TEST IEC 61000-4-5 TEST IEC 61000-4-6 TEST IEC 61000-4-8 TEST IEC 61000-4-11 TEST | | | APPENDIX 2 PHOTOGRAPHS OF EUT | 61 | | APPENDIX 3 CONDUCTED EMISSION PLOT & RADIATED EMISSION DATA | ON 66 | #### VERIFICATION OF COMPLIANCE **Equipment Under Test:** Display Monitor **Trade Name:** N/A **Model Number:** AMB-280A/AT Agency Series: N/A Applicant: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. Manufacturer: AAEON Technology Inc. 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. **Type of Test:** EMC Directive 89/336/EEC for CE Marking **Technical Standards:** EN 55022: 1998 EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 EN 61000-3-3: 1995 EN 55024: 1998 (IEC 61000-4-2: 1995 + A2: 2000, IEC 61000-4-3: 1995, IEC 61000-4-4: 1995, IEC 61000-4-5: 1995, IEC 61000-4-6: 1996, IEC 61000-4-8: 1993, IEC 61000-4-11: 1994) **File Number:** 01E9606 **Date of test:** July 16, 2001 ~ July 19, 2001 **Deviation:** N/A Condition of Test Sample: Normal The above equipment was tested by Compliance Engineering Services, Inc. for compliance with the requirements set forth in EMC Directive 89/336/EEC and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements. The test results of this report relate only to the tested sample identified in this report. Approved by Authorized Signatory: RICK YEO / EMC MANAGER 3 of 66 #### **GENERAL INFORMATION** **AAEON Technology Inc. Applicant:** 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. **Contact Person:** Jack Chao / Deputy Director **AAEON Technology Inc.** Manufacturer: 5F, No. 135, Lane 235, Pao Chiao Rd., Hsin-Tien City, Taipei, Taiwan, R. O. C. 01E9606 **File Number:** **Date of Test:** July 16, 2001 ~ July 19, 2001 **Equipment Under Test:** Display Monitor **Model Number:** AMB-280A/AT **Agency Series:** N/A **Type of Test:** EMC Directive 89/336/EEC for CE Marking EN 55022: 1998 **Technical Standards:** EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 EN 61000-3-3: 1995 EN 55024: 1998 (IEC 61000-4-2: 1995 + A2: 2000, IEC 61000-4-3: 1995, IEC 61000-4-4: 1995, IEC 61000-4-5: 1995, IEC 61000-4-6: 1996, IEC 61000-4-8: 1993, IEC 61000-4-11: 1994) **Frequency Range** 150kHz to 30MHz for Line Conducted Test (EN 55022): 30MHz to 1000MHz for Radiated Emission Test **Test Site:** Compliance Engineering Services, Inc. No. 199, Chung Sheng Road Hsin Tien City, Taipei Taiwan, R. O. C. #### **SYSTEM DESCRIPTION** #### **EUT Test Procedure:** - 1. Windows 98 Boots System. - 2. Run Winemc.exe and Pen mount to Activate All Peripherals And Display "H" Pattern on Monitor Screen. #### PRODUCT INFORMATION **Housing Type:** N/A **EUT Power Rating:** DC 12V from AC-DC Adaptor **AC power during Test:** 230VAC, 50Hz **AC-DC Adaptor Manufacturer:** CHI **AC-DC Adaptor Model Number:** CH-1205 **AC Power Cord Type:** Unshielded, 1.8m (Detachable) Max. Resolution: 1024 X 768 Max. Hor./Ver. Frequency(kHz/Hz): 80kHz / 75Hz **DC Power Cable Type:** Unshielded, 0.8m W/ One core of EUT end. (Detachable) OSC/Clock Frequencies: 14.318 MHz; 24.576 MHz #### I/O Port of EUT: | I/O PORT TYPES | Q'TY | TESTED WITH | |-----------------|------|-------------| | 1). Serial Port | 1 | 1 | | 2). VGA Port | 1 | 1 | | 3). S-Video | 1 | 1 | | 4). RCA Jack | 3 | 3 | | 5). DC Plug | 1 | 1 | Note: N/A ## SUPPORT EQUIPMENT | No | Equipment | Model | Serial | FCC | Trade | Data | Power | |----|-----------|-----------|-------------|-------------|----------|---|---------------------| | | | # | # | ID | Name | Cable | Cord | | 1. | Mouse | M-M34 | LZE02353706 | DZL211029 | Logitech | Unshielded,
1.8m | N/A | | 2. | Printer | 2225C+ | 2927S50444 | DSI6XU2225 | НР | UnShielded,
1.8m | Unshielded,
1.8m | | 3. | Notebook | 365 | TZ30518 | DOC | ACER | Serial Port:
Shielded,1.7m
VGA Port:
Shielded,1.5m
Two Ferrite Core | Unshielded,
1.8m | | 4. | Monitor | 170MP | N/A | DOC | Samsung | Video Out:
Un-Shielded,
1.8m | Unshielded,
1.8m | | 5. | HI-8 | SCH985 | 67CG300364 | DOC | Samsung | Video In #2 :
Unshielded,1.5 m
S-Video:
Unshielded, 1.5m | Unshielded,
1.8m | | 6. | V.C.R. | SLV-588HF | 0135505 | AK8SLV688HF | Sony | Video In #1 :
Shielded,
1.5m | Unshielded,
1.8m | Note: All the above equipment/cables were placed in worse case positions to maximize emission signals. **Grounding:** Grounding was in accordance with the manufacturer's requirements and conditions for the intended use. ## **TEST EQUIPMENT LIST (EMISSION)** **Instrumentation:** The following list contains equipment used at Compliance Engineering Services, Inc.. for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2-1988 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 9kHz to 1.0 / 2.0 GHz. #### **Equipment used during the tests:** Open Area Test Site: #D | | | | | Cal Date | Due Date | |---------------------|----------------|----------------------|------------|----------|----------| | Equipment | Manuf. | Model No. | Serial No. | | | | EMI TEST
DISPLAY | R&S | DSAI-D 804.8932.52 | 827832/001 | 11/05/00 | 11/05/01 | | EMI TEST RF
UNIT | R&S | ESBI-RF/1005.4300.52 | 827832/003 | 11/05/00 | 11/05/01 | | AMPLIFIER | HP | 8447D A | 2727A05764 | 05/07/01 | 05/07/02 | | ANTENNA | SCHWARZBECK | VULB 9160 | 3104 | 05/17/01 | 05/17/02 | | CABLE | TIME MICROWAVE | LMR-400 | N-TYPE02 | 07/09/01 | 07/09/02 | **Open Area Test
Site:** # E | | | | | Cal Date | Due Date | |------------------------|----------------|--------------|------------|----------|----------| | Equipment | Manuf. | Model No. | Serial No. | | | | SPECTRUM
ANALYZER | н.р. | 8566B | 2937A06102 | 06/06/01 | 06/06/02 | | SPECTRUM
DISPLAY | H.P. | 85662A | 2848A18276 | 06/06/01 | 06/06/02 | | QUASI-PEAK
DETECTOR | H.P. | 85650A | 2811A01439 | 06/07/01 | 06/07/02 | | AMPLIFIER | H.P. | 8447D B | 1644A02328 | 05/07/01 | 05/07/02 | | ANTENNA | EMCO | 3142 | 1310 | 06/30/01 | 06/30/02 | | TEST
RECEIVER | R&S | ESHS20 | 840455/006 | 03/15/01 | 03/15/02 | | LISN | EMCO | 3825/2 | 1842 | 01/10/01 | 01/10/02 | | LISN(EUT) | EMCO | 3825/2 | 1435 | 01/10/01 | 01/10/02 | | CABLE | TIME MICROWAVE | LMR-400 | N-TYPE04 | 07/09/01 | 07/09/02 | | ISN | FISHER CUSTOM | FCC-TLISN-T4 | 20065 | 04/23/01 | 04/23/02 | The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument. ## TEST EQUIPMENT LIST For Power Harmonic & Voltage Fluctuation/Flicker Measurement: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |-----------------------------------|-----------|--------------|------------|------------| | HP /
Harmonic & Flicker Tester | 6842A | 3531A-000142 | 06/15/2001 | 06/15/2002 | #### For ESD test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |-------------------|-----------|------------|------------|------------| | EMV SYSTEM / | CECD 2000 | 912006 | 12/07/2000 | 12/07/2001 | | ESD Generator | SESD 2000 | 812006 | 12/07/2000 | 12/07/2001 | For Radiated Electromagnetic Field immunity Measurement: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |------------------------------|-----------|------------|----------------|----------------| | R&S / Signal Generator | SMY 02 | DE13751 | 01/11/2001 | 01/11/2002 | | IFI / | EFS-5 | A066 | 07/02/2001 | 07/02/2002 | | "E" Field sensor/ Light | | | | | | Modulator Transmitter | | | | | | IFI / Combination Amplifier | SMX100 | 2067-1196 | 06/28/2001 | 06/28/2002 | | IFI / Leveling Pre-Amplifier | LPA-5B | 714-0695 | 05/01/2001 | 05/01/2002 | | EMCO / Biconilog Antenna | 3142 | 9609-1087 | No Calibration | No Calibration | | _ | | | Required | Required | #### For Fast Transients/Burst test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |----------------------|-----------|------------|----------------|----------------| | KeyTek Instruments / | E421 | 9502326 | 10/30/2000 | 10/30/2001 | | EFT Generator | | | | | | KeyTek Instruments / | CCL-4 | 9503290 | No Calibration | No Calibration | | Capacitive Clamp | | | Required | Required | For Surge Immunity test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |--|-----------|------------|------------|------------| | Surger Generator | E501 | 9502324 | 10/30/2000 | 10/30/2001 | | KeyTek Instruments | | | | | | Telecom Lines Coupler DECOUPLER KeyTek Instruments | CM-TELCD | 0104399 | 05/01/2001 | 05/01/2002 | | I/O Signal Line
DECOUPLER
KeyTek Instruments | CM-I/OCD | 0103234 | 05/01/2001 | 05/01/2002 | #### For CS test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |------------------------------|----------------|------------|------------|------------| | R&S / Signal Generator | SMY 02 | DE13751 | 01/11/2001 | 01/11/2002 | | IFI / Combination Amplifier | SMX100 | 2067-1196 | 06/28/2001 | 06/28/2002 | | IFI / Leveling Pre-Amplifier | LPA-5B | 714-0695 | 05/01/2001 | 05/01/2002 | | FISCHER / | FCC-801-M3-16A | 99122 | 10/01/2000 | 10/01/2001 | | Power Line Coupling | | | | | | Decoupling Network | | | | | | FISCHER / | F-120-9B | 54 | 09/17/2000 | 09/17/2001 | | Bulk Current Injection Probe | | | | | | Narda / | 769-6 | 02541 | 10/06/2000 | 10/06/2001 | | High Power Attenuator | | | | | For Power Frequency Magnetic Field test: | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | |----------------------|-----------|------------|----------------|----------------| | Haefely / | MAG 100.1 | 081436-02 | 09/28/2000 | 09/28/2001 | | Magic Field Tester | | | | | | Extech Electronics / | CFC-105 | 810390 | No Calibration | No Calibration | | Frequency Converter | | | Required | Required | | BelMERIT / | DA 435 | 5A6 003019 | 10/11/2000 | 10/11/2001 | | AC/DC Clamp Meter | | | | | For Voltage Dips/Short Interruption and Voltage Variation Immunity test: | | | | <u> </u> | | |-----------------------------|------------|------------|------------|------------| | Manufacturer/Type | Model No. | Serial No. | Last Cal. | Cal. Due | | Haefely / | PLINE 1610 | 081568-06 | 09/16/2000 | 09/16/2001 | | Dips/Inerruption/Variations | | | | | | Tester | | | | | | FLUKE / | 79-II | 66400869 | 01/10/2001 | 01/10/2002 | | 79 Series Ii Multimeter | | | | | #### SECTION 1 EN 55022 (LINE CONDUCTED & RADIATED EMISSION) ## MEASUREMENT PROCEDURE (PRELIMINARY LINE CONDUCTED EMISSION TEST) - 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2) Support equipment, if needed, was placed as per EN 55022. - 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022. - 4) The EUT received DC 12V power through AC Adaptor and Line Impedance Stabilization Network (LISN) which supplied power source of 230VAC/ 50Hz and was grounded to the ground plane. - 5) All support equipment received power from a second LISN supplying power of 110VAC/60Hz, if any. - 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7) Analyzer / Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes. - 8) During the above scans, the emissions were maximized by cable manipulation. - 9) The following test mode were scanned during the preliminary test: #### Mode: - 1. RGB & Touch Panel Mode (Data No.: 9606E# 48; Date: 07/18/2001) - 2. Video 1 & Video 2 Mode (Data No.: 9606E# 08; Date: 07/18/2001) - 3. S-Video Mode (Data No.: 9606E# 16, 64; Date: 07/18/2001) - 10) After the preliminary scan, we found the following test mode producing the highest emission level. #### Mode: 3. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing. ## MEASUREMENT PROCEDURE (FINAL LINE CONDUCTED EMISSION TEST) - 1) EUT and support equipment was set up on the test bench as per step 10 of the preliminary test. - 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Q.P. mode, then the emission signal was re-checked using an A.V. detector. - 3) The test data of the worst case condition(s) was reported on the Summary Data page. #### **Data Sample:** | | Meter | | Corrected | | | Reading | | |-------|---------|------|-----------|----------|--------|---------|---------| | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Line | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dBuV/m) | (dB) | (P/Q/A) | (L1/L2) | | X.XX | X.XX | X.XX | 48.38 | 66.00 | -17.62 | P | L1 | C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral A=Average Reading Comments: N/A ## **LINE CONDUCTED EMISSION LIMIT (EN 55022)** | Frequency | Maximum RF Line Voltage | | | | | |---------------|-------------------------|---------|--|--|--| | | Q.P. | AVERAGE | | | | | 150kHz-500kHz | 79dBuV | 66dBuV | | | | | 500kHz-5MHz | 73dBuV | 60dBuV | | | | | 5MHz-30MHz | 73dBuV | 60dBuV | | | | **Note:** The lower limit shall apply at the transition frequency. # MEASUREMENT PROCEDURE (COMMON MODE CONDUCTED EMISSION MEASUREMENT) - 1) Selecting ISN for unscreened cable or a current probe for screened cable to take measurement. - 2) The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition. - 3) Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report. - 4) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. - 5) In case of measuring on the screened cable, the current limit shall be applied, otherwise the voltage limit should be applied. - 6) The following test mode(s) were scanned during the preliminary test: Mode: N/A (EUT no any Telecommunicate Port) - 7) After the preliminary scan, we found the following test mode(s) producing the highest emission level and test date of the worst case was reported on the summary data page. Mode: N/A #### **Data
Sample:** | Freq (MHz) | Meter Reading (dBuV) | C.F. (dB) | Corrected Reading (dBuV/m) | Limits (dBuV/m) | Margin
(dB) | Reading Type
(P/Q/A) | |------------|----------------------|-----------|----------------------------|-----------------|----------------|-------------------------| | X.XX | X.XX | X.XX | 59.26 | 74.00 | -14.74 | P | C.F.(Correction Factor)=Insertion Loss (9.5dB) + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading Q=Quasi-peak A=Average Reading Comments: N/A ## COMMON MODE CONDUCTED EMISSION LIMIT AT TELECOMMUNICATION PORTS | V CE-Mark (EN 55022:1998) | | | | | | | | | | | | |---------------------------|---------------|-------------|------------|---------|--------------|--|--|--|--|--|--| | CLASS | Measuring | Voltage lin | nit dB(uV) | Current | limit dB(uA) | | | | | | | | | Band | Q.P. | AV | Q.P. | AV | | | | | | | | D | 150kHz-500kHz | 84-74 | 74-64 | 40-30 | 30-20 | | | | | | | | В | 500kHz-30MHz | 74 | 64 | 30 | 20 | | | | | | | **Note:** The lower limit shall apply at the transition frequency. ## MEASUREMENT PROCEDURE (PRELIMINARY RADIATED EMISSION TEST) - 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55022 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. - 2) Support equipment, if needed, was placed as per EN 55022. - 3) All I/O cables were positioned to simulate typical actual usage as per EN 55022. - 4) The EUT received DC 12V power source from AC Adaptor to the outlet socket under the turntable. All support equipment received 110VAC/60Hz power from another socket under the turntable, if any. - 5) The antenna was placed at 10 meter away from the EUT as stated in EN 55022. The antenna connected to the analyzer via a cable and at times a pre-amplifier would be used. - 6) The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. - 7) The following test mode were scanned during the preliminary test: #### Mode: - 1. RGB & Touch Panel Mode (Data No. 9606D# 15, 18; Date: 07/16/2001) - 2. Video 1 & Video 2 Mode (Data No. 9606D# 12; Date: 07/16/2001) - 3. S-Video Mode (Data No. 9606D# 11; Date: 07/16/2001) - 8) After the preliminary scan, we found the following test mode producing the highest emission level. #### Mode: 1. Then, the EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for final testing. ## MEASUREMENT PROCEDURE (FINAL RADIATED EMISSION TEST) - 1) EUT and support equipment were set up on the turntable as per step 8 of the preliminary test. - 2) The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. - 3) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Peak reading is presented. If EUT emission level was less-2dB to the limit, then the emission signal was re-checked using a Q.P. detector. - 4) The test data of the worst case condition(s) was reported on the Summary Data page. #### **Data Sample:** | | Meter | | Corrected | | | Reading | | |-------|---------|--------|-----------|----------|--------|---------|------| | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Pol. | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | P/Q/A | H/V | | X.XX | X.XX | X.XX | 40.82 | 47.00 | -6.18 | P | V | C.F.(Correction Factor)=Antenna Factor + Cable Loss + Attenuator(3/6dB) - Amplifier Gain Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading – Limits P=Peak Reading H=Horizontal Polarization/Antenna Q=Quasi-peak V=Vertical Polarization/Antenna A=Average Reading Comments: N/A ## **RADIATED EMISSION LIMIT** | Frequency (MHz) | Distance (m) | Maximum Field Strength Limit (dBu V/m/ Q.P.) | |-----------------|--------------|--| | 30-230 | 10 | 40 | | 230-1000 | 10 | 47 | **Note:** The lower limit shall apply at the transition frequency. ## **BLOCK DIAGRAM OF TEST SETUP** #### **System Diagram of Connections between EUT and Simulators** **EUT:** Display Monitor Trade Name: N/A Model Number: AMB-280A/AT #### **SUMMARY DATA** ## (LINE CONDUCTED TEST) **Model Number:** AMB-280A/AT **Location:** Site # E Tested by: Michael Hung **Test Model:** Mode 3 Test Results: Passed **Temperature:** 24°C **Humidity:** 60%RH (The chart below shows the highest readings taken from the final data) | | Six Highest Conducted Emission Readings | | | | | | | | | | | | | |-----------|---|----------|-----------|----------|------------|----------|---------|--|--|--|--|--|--| | Frequency | Range Inves | stigated | | | 150 kHz T0 | O 30 MHz | | | | | | | | | | Meter | | Corrected | | | Reading | | | | | | | | | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Line | | | | | | | | (MHz) | (dBuV) | (dB) | (dBuV/m) | (dBuV/m) | (dB) | (P/Q/A) | (L1/L2) | | | | | | | | 0.178 | 53.57 | 0.02 | 53.59 | 79.00 | -25.41 | P | L1 | | | | | | | | 5.623 | 47.48 | 0.28 | 47.76 | 73.00 | -25.24 | P | L1 | | | | | | | | 9.705 | 49.04 | 0.34 | 49.38 | 73.00 | -23.62 | P | L1 | | | | | | | | 9.913 | 49.15 | 0.34 | 49.49 | 73.00 | -23.51 | P | L1 | | | | | | | | 10.342 | 46.49 | 0.34 | 46.84 | 73.00 | -26.16 | P | L1 | | | | | | | | 0.178 | 53.15 | 0.02 | 53.17 | 79.00 | -25.83 | P | L2 | | | | | | | C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral A=Average Reading Comments: N/A #### **SUMMARY DATA** ## (COMMON MODE CONDUCTED EMISSION MEASUREMENT) Model Number: N/A Location: N/A **Tested by:** N/A **Test Mode:** N/A **Test Results:** N/A Temperature: N/A Humidity: N/A (The chart below shows the highest readings taken from the final data) | | Six Highest Conducted Emission Readings | | | | | | | | | | | | |-------------|---|-----------|----------------------------------|-----------------|----------------|-------------------------|--|--|--|--|--|--| | Frequency 1 | Range Invest | igated | | 1: | 50 kHz TO 30 M | Hz | | | | | | | | Freq (MHz) | Meter
Reading
(dBuV) | C.F. (dB) | Corrected
Reading
(dBuV/m) | Limits (dBuV/m) | Margin
(dB) | Reading Type
(P/Q/A) | C.F.(Correction Factor)=Insertion Loss (9.5dB) + Cable Loss Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading Q=Quasi-peak A=Average Reading Comments: EUT no any Telecommunicate Port. # SUMMARY DATA (RADIATED EMISSION TEST) **Model Number:** AMB-280A/AT **Location:** Site # D **Tested by:** Michael Hung **Polar:** Vertical / Horizontal— 10m Test Mode: Mode 1 Test Results: Passed **Temperature:** 25^oC **Humidity:** 65%RH (The chart below shows the highest readings taken from the final data) | Frequency 1 | Range Invest | tigated | | 30 |) MHz TO 1 | 000 MHz | | |-------------|--------------|---------|-----------|----------|------------|---------|--------------| | | Meter | | Corrected | | | Reading | | | Freq | Reading | C.F. | Reading | Limits | Margin | Type | Pol. | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | P/Q/A | H/V | | 36.008 | 38.89 | -9.88 | 29.01 | 40.00 | -10.99 | P | V | | 149.786 | 37.42 | -7.11 | 30.31 | 40.00 | -9.69 | P | V | | 791.667 | 31.35 | 4.93 | 36.28 | 47.00 | -10.72 | P | \mathbf{V} | | 801.933 | 36.86 | 5.11 | 41.97 | 47.00 | -5.03 | P | \mathbf{V} | | 801.882 | 33.94 | 5.11 | 39.05 | 47.00 | -7.95 | P | Н | | 880.518 | 29.73 | 6.13 | 35.86 | 47.00 | -11.14 | P | Н | C.F.(Correction Factor)=Antenna Factor + Cable Loss + Attenuator (6dB) - Amplifier Gain Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits P=Peak Reading H=Horizontal Polarization/Antenna Q=Quasi-peak V=Vertical Polarization/Antenna A=Average Reading Comments: N/A ## SECTION 2 EN 61000-3-2 & EN 61000-3-3 (POWER HARMONICS & VOLTAGE FLUCTUATION/FLICKER) #### POWER HARMONICS MEASUREMENT **Port** : AC mains **Basic Standard** : EN 61000-3-2: 1995 + A1: 1998 + A2: 1998 + A14: 2000 Limits : CLASS D **Tester** : Michael Hung **Temperature** : 24 °C **Humidity** : 60 % #### VOLTAGE FLUCTUATION/FLICKER MEASUREMENT **Port** : AC mains **Basic Standard** : EN 61000-3-3 : 1995 **Limits** : Section 5 of EN 61000-3-3 **Tester** : Michael Hung **Temperature** : 24 °C **Humidity** : 60 % ### **Block Diagram of Test Setup:** #### **Result:** Please see the attached test data. 21 of 66 Approved by: Rick GO Signature: Michael - Hung Date: 7/9 Final Test Result: PASS Settings and Test Conditions Compliant to the Standard: Yes Test Equipment Used: Agilent 6842A Harmonic/Flicker Test System with serial number: HFTS Software Version: A.05.03 Date Last Calibrated: Test Equipment Settings: Line Voltage:
230.00 V Current Measurement Range: High Line Frequency: 50 Hz Measurement Window Type: Rectangular Device Class: D Measurement Delay: 10 seconds RMS Current Limit: 13.1 A Quasi-stationary Test Duration: 30.00 minutes RMS Current Limit: 13.1 A Quasi-stationary Test Duration: 30.00 minutes Peak Current Limit: 80.8 A Class Determination Pre-test Duration: 10.00 seconds Number of Records: 5625 Overrides: Test Limit Source (Power Measurements/Statistics): Maximum Power Overrides: None Test Limit Overrides: None Pre-test Results for Class Determination: Percent in Envelope: 100.0% Voltage THD Out-of-Specification?: No Class D Equipment?: Yes Fundamental Current: 0.218 A RMS Voltage: 229.8 V RMS Current: 0.5 A Real Power: 48.1 W Frequency: 50.0 Hz Peak Current: 2.1 A Apparent Power: 111.6 VA Voltage THD: 0.04% Current THD: 89.28% Power Factor: 0.431 Maximum Power: 48.1 W Mean Power: 48.0 W Active Power Statistics: 100th Percentile: 48.1 W 99th Percentile: 48.1 W 95th Percentile: 48.1 W 90th Percentile: 48.1 W Total Number of Failures: Total Number of Errors: #### Pre-Test Source Voltage Harmonics Data: | Harmonic
Number | (%) | Limit
(Volts) | Max
(%) | Max
(Volts) | | |--------------------|------|------------------|------------|----------------|--| | Fund. | | | 100.0 | 229.849 | | | 2 | 0.20 | 0.460 | 0.006 | 0.014 | | | 3 | 0.90 | 2.069 | 0.008 | 0.019 | | | 4 | 0.20 | 0.460 | 0.004 | 0.009 | | | 5 | 0.40 | 0.919 | 0.012 | 0.028 | | | 6 | 0.20 | 0.460 | 0.002 | 0.004 | | | 7 | 0.30 | 0.690 | 0.009 | 0.021 | | | 8 | 0.20 | 0.460 | 0.002 | 0.004 | | | 9 | 0.20 | 0.460 | 0.015 | 0.033 | | | 10 | 0.20 | 0.460 | 0.003 | 0.007 | | | 11 | 0.10 | 0.230 | 0.013 | 0.031 | | | 12 | 0.10 | 0.230 | 0.003 | 0.007 | | | 13 | 0.10 | 0.230 | 0.015 | 0.035 | | | 14 | 0.10 | 0.230 | 0.002 | 0.004 | | | 15 | 0.10 | 0.230 | 0.010 | 0.024 | | | 16 | 0.10 | 0.230 | 0.003 | 0.006 | | | 17 | 0.10 | 0.230 | 0.012 | 0.028 | | | 18 | 0.10 | 0.230 | 0.003 | 0.007 | | | 19 | 0.10 | 0.230 | 0.009 | 0.021 | | | 20 | 0.10 | 0.230 | 0.001 | 0.003 | | | 21 | 0.10 | 0.230 | 0.009 | 0.020 | | | 22 | 0.10 | 0.230 | 0.003 | 0.008 | | | 23 | 0.10 | 0.230 | 0.008 | 0.017 | | | 24 | 0.10 | 0.230 | 0.001 | 0.002 | | | 25 | 0.10 | 0.230 | 0.004 | 0.009 | | | 26 | 0.10 | 0.230 | 0.002 | 0.004 | | | 27 | 0.10 | 0.230 | 0.007 | 0.015 | | | 28 | 0.10 | 0.230 | 0.001 | 0.002 | | | 29 | 0.10 | 0.230 | 0.004 | 0.010 | | | 3.0 | 0.10 | 0.230 | 0.003 | 0.006 | | | 31 | 0.10 | 0.230 | 0.007 | 0.016 | | | 32 | 0.10 | 0.230 | 0.002 | 0.004 | | | 33 | 0.10 | 0.230 | 0.005 | 0.013 | | | 34 | 0.10 | 0.230 | 0.001 | 0.003 | | | 35 | 0.10 | 0.230 | 0.006 | 0.014 | | | 36 | 0.10 | 0.230 | 0.003 | 0.008 | | | 37 | 0.10 | 0.230 | 0.006 | 0.003 | | | 38 | 0.10 | 0.230 | 0.001 | 0.010 | | | 39 | 0.10 | 0.230 | 0.004 | 0.002 | | | 40 | 0.10 | 0.230 | 0.001 | 0.002 | | Final Test Data: | Harmonic
Number | Standard
Limit
(A rms) | Maximum
Value
(A rms) | Maximum
Value
(% Limit) | Mean
Value
(A rms) | Mean
Value
(% Limit) | (A rms) | Standard
Deviation
(% Limit) | Pass
or
Fail | (F) | |--------------------|------------------------------|-----------------------------|-------------------------------|--------------------------|----------------------------|---------|------------------------------------|--------------------|-----| | Fund. | | 0.2104 | | 0.2074 | | 0.0011 | | | | | 2 | | 0.0018 | | 0.0014 | | 0.0001 | | | | | 2 | 2.3000 | 0.1984 | 8.6 | 0.1955 | 8.5 | 0.0010 | 0.0 | P | | | 4 | | 0.0017 | | 0.0013 | | 0.0001 | | | | | 5 | 1.1400 | 0.1887 | 16.5 | 0.1860 | 16.3 | 0.0008 | 0.1 | P | | | 6 7 | | 0.0013 | | 0.0009 | | 0.0001 | | | | | 7 | 0.7700 | 0.1750 | 22.7 | 0.1728 | 22.4 | 0.0006 | 0.1 | P | | | 8 | | 0.0011 | | 0.0007 | | 0.0001 | | | | | 9 | 0.4000 | 0.1582 | 39.5 | 0.1567 | 39.2 | 0.0003 | 0.1 | P | | | 10 | | 0.0010 | | 0.0007 | | 0.0001 | | | | | 11 | 0.3300 | 0.1394 | 42.3 | 0.1386 | 42.0 | 0.0002 | 0.1 | P | | | 12 | | 0.0011 | | 0.0007 | | 0.0001 | | | | | 13 | 0.2100 | 0.1203 | 57.3 | 0.1192 | 56.8 | 0.0004 | 0.2 | P | | | 14 | | 0.0011 | | 0.0006 | | 0.0001 | | | | | 15 | 0.1500 | 0.1007 | 67.1 | 0.0993 | 66.2 | 0.0007 | 0.5 | P | | | 16 | | 0.0009 | | 0.0004 | | 0.0002 | | | | | 17 | 0.1324 | 0.0812 | 61.4 | 0.0795 | 60.1 | 0.0009 | 0.7 | P | | | 18 | | 0.0007 | | 0.0003 | | 0.0001 | | | | | 19 | 0.1184 | 0.0628 | 53.1 | 0.0610 | 51.5 | 0.0010 | 0.9 | P | | | 20 | | 0.0008 | | 0.0003 | | 0.0002 | | | | | 21 | 0.1071 | 0.0464 | 43.3 | 0.0445 | 41.6 | 0.0010 | 1.0 | P | | | 22 | | 0.0009 | | 0.0004 | | 0.0002 | | | | | 23 | 0.0978 | 0.0328 | 33.6 | 0.0313 | 32.0 | 0.0009 | 0.9 | P | | | 24 | | 0.0010 | | 0.0005 | | 0.0002 | | | | | 25 | 0.0900 | 0.0232 | 25.8 | 0.0222 | 24.6 | 0.0006 | 0.7 | P | | | 26 | | 0.0011 | | 0.0005 | | 0.0002 | | | | | 27 | 0.0833 | 0.0187 | 22.4 | 0.0180 | 21.6 | 0.0002 | 0.3 | P | | | 28 | | 0.0010 | | 0.0005 | | 0.0002 | | | | | 29 | 0.0776 | 0.0182 | 23.5 | 0.0174 | 22.4 | 0.0003 | 0.4 | P | | | 30 | | 0.0011 | | 0.0006 | | 0.0002 | | | | | 31 | 0.0726 | 0.0187 | 25.8 | 0.0179 | 24.7 | 0.0003 | 0.4 | P | | | 32 | | 0.0011 | | 0.0005 | | 0.0002 | | | | | 33 | 0.0682 | 0.0184 | 27.0 | 0.0178 | 26.2 | 0.0002 | 0.3 | P | | | 34 | | 0.0011 | | 0.0005 | | 0.0002 | | | | | 35 | 0.0643 | 0.0170 | 26.4 | 0.0167 | 25.9 | 0.0001 | 0.2 | P | | | 36 | | 0.0010 | | 0.0004 | | 0.0002 | | | | | 37 | 0.0608 | 0.0149 | 24.6 | 0.0145 | 23.8 | 0.0002 | 0.3 | P | | | 38 | | 0.0009 | | 0.0004 | | 0.0002 | | | | | 39 | 0.0577 | 0.0122 | 21.2 | 0.0116 | 20.1 | 0.0003 | 0.5 | P | | | 40 | | 0.0008 | | 0.0003 | | 0.0002 | | | | Final Test Statistics: | Harmonic
Number | Standard
Limit
(A rms) | Maximum
Value
(A rms) | Maximum
Value
(% Limit) | >50%
of Limit
(Count) | >75%
of Limit
(Count) | >90%
of Limit
(Count) | >95%
of Limit
(Count) | >100%
of Limit
(Count) | Pass (
or
Fail (| |--------------------|------------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|------------------------| | Fund. | | 0.2104 | | | | | | | | | 2 | | 0.0018 | | 0 | 0 | 0 | 0 | 0 | | | 3 | 2.3000 | 0.1984 | 8.6 | 0 | 0 | 0 | ő | 0 | p | | 4 | | 0.0017 | | 0 | 0 | 0 | o | ő | E | | 5 | 1.1400 | 0.1887 | 16.5 | 0 | 0 | 0 | ő | 0 | p | | 6 | | 0.0013 | | 0 | 0 | 0 | ŏ | 0 | | | 7 | 0.7700 | 0.1750 | 22.7 | o o | o o | 0 | ő | ő | P | | 8 | | 0.0011 | | 0 | 0 | 0 | ő | ő | r | | 9 | 0.4000 | 0.1582 | 39.5 | 0 | ō | o o | ő | ő | p | | 10 | | 0.0010 | 0010 | ō | 0 | ő | 0 | o | P | | 11 | 0.3300 | 0.1394 | 42.3 | o o | ő | ő | ő | ő | p | | 12 | | 0.0011 | 1010 | ŏ | o | 0 | ő | ő | P | | 13 | 0.2100 | 0.1203 | 57.3 | 5625 | ŏ | ő | ő | 0 | - | | 14 | | 0.0011 | 5115 | 0 | o | o | ő | 0 | P | | 15 | 0.1500 | 0.1007 | 67.1 | 5625 | ŏ | ő | 0 | 0 | | | 16 | 012000 | 0.0009 | 0111 | 0 | o | 0 | 0 | 0 | P | | 17 | 0.1324 | 0.0812 | 61.4 | 5625 | ő | ő | 0 | - | | | 18 | 0.1064 | 0.0007 | 01.4 | 0 | ő | ő | | 0 | P | | 19 | 0.1184 | 0.0628 | 53.1 | 5339 | 0 | ő | 0 | 0 | | | 20 | 0.1104 | 0.0008 | 33.1 | 0 | 0 | ő | 0 | 0 | P | | 21 | 0.1071 | 0.0464 | 43.3 | 0 | 0 | ő | | 0 | _ | | 22 | 0.1011 | 0.0009 | 43.3 | 0 | 0 | 0 | 0 | | P | | 23 | 0.0978 | 0.0328 | 33.6 | 0 | 0 | 0 | 0 | 0 | | | 24 | 0.0370 | 0.0010 | 33.0 | 0 | . 0 | 0 | | 0 | P | | 25 | 0.0900 | 0.0232 | 25.8 | 0 | 0 | 0 | 0 | 0 | | | 26 | 0.0500 | 0.0011 | 20.0 | 0 | 0 | 0 | 0 | 0 | P | | 27 | 0.0833 | 0.0117 | 22.4 | 0 | | - | 0 | 0 | | | 28 | 0.0033 | 0.0010 | 22.9 | 0 | 0 | 0 | 0 | 0 | P | | 29 | 0.0776 | 0.0182 | 23.5 | 0 | 0 | 0 | 0 | 0 | | | 30 | 0.0776 | 0.0011 | 23.5 | | | 0 | 0 | 0 | P | | 31 | 0.0726 | 0.0111 | 25 0 | 0 | 0 | 0 | 0 | 0 | | | 32 | 0.0726 | | 25.8 | 0 | 0 | 0 | 0 | 0 | P | | 33 | 0.0682 | 0.0011 | 77.0 | 0 | 0 | 0 | 0 | 0 | | | 34 | 0.0602 | 0.0184 | 27.0 | 0 | 0 | 0 | 0 | 0 | P | | | 0.0043 | 0.0011 | | 0 | 0 | 0 | 0 | 0 | | | 35 | 0.0643 | 0.0170 | 26.4 | 0 | 0 | 0 | 0 | 0 | P | | 36 | 0.0000 | 0.0010 | | 0 | 0 | 0 | 0 | 0 | | | 37 | 0.0608 | 0.0149 | 24.6 | 0 | 0 | 0 | 0 | 0 | P | | 38 | 0.0500 | 0.0009 | | 0 | 0 | 0 | 0 | 0 | | | 39 | 0.0577 | 0.0122 | 21.2 | 0 | 0 | 0 | 0 | 0 | P | | 40 | | 0.0008 | | 0 | 0 | 0 | 0 | 0 | | Remarks Date: JULY 23, 2001 Project No: 01E9606 Approved by: Signature: Final Test Result: PASS Settings and Test Conditions Compliant to the Standard: Yes Test Equipment Used: Agilent 6842A Harmonic/Flicker Test System with serial number: HFTS Software Version: A.05.03 Date Last Calibrated: Test Equipment Settings: Current Measurement Range: High Measurement Window Type: Rectangular Measurement Delay: 10 seconds Quasi-stationary Test Duration: 30.00 minutes Line Voltage: 230.00 V Line Frequency: 50 Hz Device Class: RMS Current Limit: 13.1 A Peak Current Limit: 80.8 A Number of Records: 5625 Class Determination Pre-test Duration: 10.00 seconds Overrides: Test Limit Source (Power Measurements/Statistics): Maximum Power Overrides: None Test Limit Overrides: None Pre-test Results for Class Determination: Percent in Envelope: 100.0% Voltage THD Out-of-Specification?: No Class D Equipment?: Yes Fundamental Current: 0.218 A RMS Current: 0.5 A Peak Current: 2.1 A Real Power: 48.1 W RMS Voltage: 229.8 V 50.0 Hz Apparent Power: 111.6 VA Frequency: 50.0 Hz Voltage THD: 0.04% Power Factor: 0.431 Current THD: 89.28% Mean Power: 48.0 W Maximum Power: 48.1 W Active Power Statistics: 99th Percentile: 48.1 W 50th Percentile: 48.1 W 95th Percentile: 48.1 100th Percentile: 48.1 W 90th Percentile: 48.1 W Total Number of Errors: Total Number of Failures: None None #### Final Test Summary: | Dmax: | 0.0 | Pst: 0.07 | | P 0.1: | 0.01 | |-------|------|----------------|------|--------|------| | Dc: | 0.0 | Plt: 0.07 | | P 1s: | 0.01 | | Dt: | 0.00 | Plt Threshold: | 0.65 | P 3s: | 0.01 | | | | | | P 10s: |
0.01 | | | | | | P 50s: | 0.01 | #### Final Test Data by Integration Period: Number of Integration Periods: 3 | Integration
Periods | n Pst
(P.U.) | P_0.1
(P.U.) | P_1.0s
(P.U.) | P_3.0s
(P.U.) | P_10s
(P.U.) | P_50s
(P.U.) | Dc
(%) | Dmax
(%) | Dt
(seconds) | Pass(P
or
Fail(F | |------------------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|-----------|-------------|-----------------|------------------------| | 1 | 0.07 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | | | N/A | | 3 | 0.07 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | | | N/A
N/A | Remarks ### **SECTION 3 IEC 61000-4-2 (ELECTROSTATIC DISCHARGE)** ### **ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST** **Port** : Enclosure **Basic Standard**: IEC 61000-4-2 **Requirements** : ±4kV (Contact Discharge) ±4kV (Indirect Discharge) ±8kV (Air Discharge) **Performance Criteria**: B (Standard require) **Tested by** : Michael Hung **Temperature/Humidity:** 24°C / 60% ### **Block Diagram of Test Setup:** (The 470 k ohm resistors are installed per standard requirement) Ground Reference Plane #### **Test Procedure:** - 1. The EUT was located 0.1 m minimum from all side of the HCP. - 2. The support units were located 1 m minimum away from the EUT. - 3. A communication test program was loaded and executed in Windows mode. - 4. PC sent transmit data to remote side via EUT. - 5. As per the requirement of EN 55024; applying direct contact discharge at the sides other than front of EUT at minimum 50 discharges (25 positive and 25 negative) if applicable, can't be applied direct contact discharge side of EUT then the indirect discharge shall be applied. One of the test points shall be subjected to at least 50 indirect discharge (contact) to the front edge of horizontal coupling plane. - 6. Other parts of EUT where it is not possible to perform contact discharge then selecting appropriate points of EUT for air discharge, a minimum of 10 single air discharges shall be applied. - 7. The application of ESD to the contact of open connectors is not required. - 8. Putting a mark on EUT to show tested points. The following test condition was followed during the tests. The electrostatic discharges were applied as follows: | Amount of Voltage | | Coupling | Result (Pass/Fail) | | |-------------------|------|--------------------------------|--------------------|--| | Discharges | | | | | | Mini 25 /Point | ±4kV | Contact Discharge | Pass | | | Mini 25 /Point | ±4kV | Indirect Discharge HCP (Front) | Pass | | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Back) | Pass | | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Left) | Pass | | | Mini 25 /Point | ±4kV | Indirect Discharge VCP (Right) | Pass | | | Mini 10 /Point | ±8kV | Air Discharge | Not Applicability | | ## Performance & Result: | Obsamya | tion: No any function degraded during the tests. | |-------------|--| | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Criteria A: | The apparatus continues to operate as intended. No degradation of performance closs of function is allowed below a performance level specified by the manufacture when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | #### SECTION 4 IEC 61000-4-3 (RADIATED ELECTROMAGNETIC FIELD) #### RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST **Port** : Enclosure **Basic Standard**: IEC 61000-4-3 **Requirements** : 3 V/m / with 80% AM. 1kHz Modulation **Performance Criteria**: A (Standard require) **Tester** : Michael Hung **Temperature** : 23 °C **Humidity** : 58% Note : The EUT not have acoustic interfaces, the annex A of EN 55024 should not be applied. #### **Block Diagram of Test Setup:** ### **Test Procedure:** 1. The EUT was located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity. The support units were located outside of the uniformity area, but the cable(s) connected with EUT were exposed to the calibrated field as per IEC 61000-4-3. - 2. Transmit data messages were displayed on part of screen of monitor and a scroll "H" messages were displayed on the other part of screen of Monitor. - 3. Adjusting the monitoring camera to monitor the display message as clear as possible. - 4. Setting the testing parameters of RS test software per IEC 61000-4-3. - 5. Performing the pre-test at each side of with double specified level (6V/m) at 4% steps. - 6. From the result of pre-test in step 5, choice the worst side of EUT for final test from 80 MHz to 1000 MHz at 1% steps. - 7. Recording the test result in following table. - 8. It is not necessary to perform test as per annex A of EN 55024:1998 if the EUT doesn't belong to TTE product. #### **IEC 61000-4-3 Preliminary test conditions:** Test level : 6V/m Steps : 4 % of fundamental Dwell Time : 3 sec | DWCII TIIIC | . 5 500 | | | | | |-------------|---------|------------|----------|--------------|--------------------| | Range (MHz) | Field | Modulation | Polarity | Position (°) | Result (Pass/Fail) | | 80-1000 | 6V | Yes | Н | Front | Pass | | 80-1000 | 6V | Yes | V | Front | Pass | | 80-1000 | 6V | Yes | Н | Right | Pass | | 80-1000 | 6V | Yes | V | Right | Pass | | 80-1000 | 6V | Yes | Н | Back | Pass | | 80-1000 | 6V | Yes | V | Back | Pass | | 80-1000 | 6V | Yes | Н | Left | Pass | | 80-1000 | 6V | Yes | V | Left | Pass | #### IEC 61000-4-3 Final test conditions: Test level : 3V/m Steps : 1 % of fundamental Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Polarity | Position (°) | Result (Pass/Fail) | |-------------|-------|------------|----------|--------------|--------------------| | 80-1000 | 3V | Yes | Н | Front | Pass | | 80-1000 | 3V | Yes | V | Front | Pass | # **Performance & Result:** | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | |---------------|--| | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | | V PASS FAILED | | Observa | tion: No any function degraded during the tests. | ## **SECTION 5 IEC 61000-4-4 (FAST TRANSIENTS/BURST)** #### FAST TRANSIENTS/BURST IMMUNITY TEST **Port** : On Power Lines and Data Line **Basic Standard**: IEC 61000-4-4 **Requirements** : $\pm 1 \text{kV}$ for Power Supply Lines **Performance Criteria**: B (Standard require) **Tested by** : Michael Hung **Temperature** : 24⁰C **Humidity** : 60% ### **Block Diagram of Test Setup:** #### **Test Procedure:** 1. The EUT and support units were located on a wooden table 0.8 m away from ground reference plane. - 2. A 1.0 meter long power cord was attached to EUT during the test. - 3. The length of communication cable between communication port and clamp was keeping within 1 meter. - 4. A test program was loaded and executed in Windows mode. - 5. The data was display on the monitor and filling the screens. - 6. The test program exercised related support units sequentially. - 7. Repeating step 3 to 6 through the test. - 8. Recording the test result as shown in following table. #### **Test conditions:** Impulse Frequency: 5kHz **Performance & Result:** Tr/Th: 5/50ns Burst Duration: 15ms Burst Period: 3Hz | Inject Line | Voltage kV | Inject Method | Result (Pass/Fail) | |-------------|------------|---------------|--------------------| | L1 | +/- 1 | Direct | Pass | | N | +/- 1 | Direct | Pass | | L1+N | +/- 1 | Direct | Pass | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. In some cases the performance level may replaced by a permissible loss of performance. | r, | |---------------
---|----| | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by to manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or cabe restored by the operation of controls. | ın | | Observat | ion: No any function degraded during the tests. | | ## **SECTION 6 IEC 61000-4-5 (SURGE IMMUNITY)** #### **SURGE IMMUNITY TEST** Port : Power Cord **Basic Standard**: IEC 61000-4-5 **Requirements** : +/- 1kV (Line to Line of Power Port) +/- 2kV (Line to Eatrth of Power Port) **Performance Criteria** : B (Standard require) **Tester** : Michael Hung **Temperature** : 24°C **Humidity** : 60% ### **Block Diagram of Test Setup:** #### **Test Procedure:** 1. The EUT and support units were located on a wooden table 0.8 m away from ground floor. - 2. A test program was loaded and executed in Windows mode. - 3. The data was display on the monitor and filling the screens. - 4. The test program exercised related support units sequentially. - 5. Repeating step 3 to 4 through the test. - 6. Recording the test result as shown in following table. #### **Test conditions:** Voltage Waveform : 1.2/50 us Current Waveform : 8/20 us Polarity : Positive/Negative Phase angle : 0°, 90°, 180°, 270° Number of Test : 5 | Coupling Line | Voltage (kV) | Polarity | Coupling Method | Result (Pass/Fail) | |-----------------------|--------------|----------|------------------------|--------------------| | L1-L2 \ L1-PE \ L2-PE | 1 | Positive | Capacitive | Pass | | L1-L2 \ L1-PE \ L2-PE | 1 | Negative | Capacitive | Pass | | L1-PE、L2-PE | 2 | Positive | Capacitive | Pass | | L1-PE、L2-PE | 2 | Negative | Capacitive | Pass | # # SECTION 7 IEC 61000-4-6 (CONDUCTED DISTRBANCE/INDUCED BY RADIO-FREQUENCY FIELD) **Port** : AC Port and Line Cable **Base Standard**: IEC 61000-4-6 **Requirements** : 3 V with 80% AM. Modulation **Injection Method** : CDN for Power Cord **Deviation** :None **Performance Criteria**: A (Standard require) **Tester** : Michael Hung **Temperature** : 23°C **Humidity** : 60% Note : The EUT not have acoustic interfaces, the annex A of EN 55024 should not be applied. ### **Block Diagram of Test Setup:** #### Side view: #### Top view: 10 cm isolation supporter ## **Test Procedure:** - 1. The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly. - 2. Transmit data messages were displayed on screen of Monitor. - 3. Adjusting the monitoring camera to monitor the transmit data message as clear as possible. - 4. Setting the testing parameters of CS test software per EN 61000-4-6. - 5. Recording the test result in following table. #### **Test conditions:** Frequency Range : 0.15MHz-80MHz Frequency Step : 1% of fundamental Dwell Time : 3 sec | Range (MHz) | Field | Modulation | Result (Pass/Fail) | |-------------|-------|------------|--------------------| | 0.15-80 | 3V | Yes | Pass | # **Performance & Result:** | V Crite | ria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | |-------------|--------|--| | Criteria B: | | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | Crite | ria C: | Temporary loss of function is allowed, provided the functions self-recoverable or can be restored by the operation of controls. | | | | V PASS FAILED | | Obse | ervat | ion: No any function degraded during the tests. | # SECTION 8 IEC 61000-4-8 (POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST) ## POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST **Port** : Enclosure **Basic Standard**: IEC 61000-4-8 **Requirements** : 1 A/m **Performance Criteria** : A (Standard Required) **Tester** : Michael Hung **Temperature** : 24°C **Humidity** : 61% ## **Block Diagram of Test Setup:** ## **Test Procedure:** 1. The EUT and support units were located on Ground Reference Plane with the interposition of a 0.1 m thickness insulation support. - 2. Putting the induction coil on horizontal direction.(X direction) - 3. A test program was loaded and executed in Windows mode. - 4. The data was displayed on the screen of Monitor and filling the screen. - 5. The test program exercised related support units sequentially. - 6. Repeating step 3 to 5 through the test. - 7. Recording the test result as shown in following table. - 8. Rotating the induction coil by 90° (Y direction) then repeat step 3 to 7. - 9. Rotating the induction coil by 90 $^{\circ}$ again (Z direction) then repeat step 3 to 7. #### *. Test conditions: Field Strength: 1A/m Power Freq.: 50Hz Orientation: X, Y, Z | Orientation | Field | Result (Pass/Fail) | Remark | |-------------|-------|--------------------|--| | X | 1A | Pass | No any function degraded during the tests. | | Y | 1A | Pass | No any function degraded during the tests. | | Z | 1A | Pass | No any function degraded during the tests. | # **Performance & Result:** | | <i>V PASS</i> | |---------------|--| | Criteria C: | Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. | | Criteria B: | The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. | | V Criteria A: | The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. | # SECTION 9 IEC 61000-4-11 (VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS) #### **VOLTAGE DIPS / SHORT INTERRUPTIONS** **Port** : AC mains **Basic Standard** : IEC 61000-4-11 (1994) **Requirement**: Phase angles 0, 45, 90, 135, 180, 225, 270, 315 degrees. | | Test Level | Reduction | Duration | Performance | |---------|------------------|-----------|-------------|-------------| | Voltage | % U _T | (%) | (periods) | Criteria | | Dips | <5 | >95 | 0.5 | В | | | 70 | 30 | 25 | С | | Valtage | Test Level | Reduction | Duration | Performance | |---------------|-------------------|-----------|-------------|-------------| | Voltage | $\%~\mathrm{U_T}$ | (%) | (periods) | Criteria | | Interceptions | <5 | >95 | 250 | С | **Test Interval** : Min. 10 sec. **Tester** : Michael Hung **Temperature** : 24°C **Humidity** : 60% ## **Block Diagram of Test Setup:** 47 of 66 ### **Test Procedure:** - 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor. - 2. A test program was loaded and executed in Windows mode. - 3. The data was displayed on the monitor and filling the screens. - 4. The test program exercised related support units sequentially. - 5. Setting the parameter of tests and then Perform the test software of test simulator. - 6. Conditions changes to occur at 0 degree crossover point of the voltage waveform. - 7. Repeating step 3 to 4 through the test. - 8. Recording the test result in test record form. #### **Test conditions:** The duration with a sequence of three dips/interruptions with interval of 10s minimum (between each test events) #### **Voltage Dips:** | Test Level % U _T | Reduction (%) | Duration (periods) | Observation | Meet Performance
Criteria | |-----------------------------|---------------|--------------------|-------------|------------------------------| | 0 | 100 | 0.5 | Normal | A | | 70 | 30 | 25 | Normal | A | **Voltage Interruptions:** | Test Level | Reduction | Duration | Observation | Meet Performance | |------------|-----------|------------|-----------------------|------------------| | $\% U_{T}$ | (%) | (periods) | | Criteria | | 0 | 100 | 250 | EUT shut
down, But | В | | | | | EUT can be auto | | | | | | recovered after Power | | | | | | Turn On. | | Normal: No any functions degrade during and after the test. # **Performance & Result:** - **Criteria A:** The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. - **Criteria B:** The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. - **Criteria C:** Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls. |--| 48 of 66 ### **APPENDIX 1** # PHOTOGRAPHS OF TEST SETUP # **LINE CONDUCTED EMISSION TEST (EN 55022)** # **RADIATED EMISSION TEST (EN 55022)** # POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST (EN 61000-3-2, EN 61000-3-3) # **ELECTROSTATIC DISCHARGE TEST (IEC 61000-4-2)** # **RADIATED ELECTROMAGNETIC FIELD (IEC 61000-4-3)** **Back View** ## **Right View** **Left View** # FAST TRANSIENTS/BURST TEST & SURGE IMMUNITY TEST (IEC 61000-4-4/5) # CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS TEST (IEC 61000-4-6) # **POWER FREQUENCY MAGNETIC FIELD (IEC 61000-4-8)** # IEC 61000-4-8 X IEC 61000-4-8 Y 58 of 66 # **VOLTAGE DIPS / INTERRUPTION TEST (IEC 61000-4-11)** # **APPENDIX 2** # PHOTOGRAPHS OF EUT ## **APPENDIX 3** # CONDUCTED EMISSION PLOT RADIATED EMISSION DATA No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 16 File#: 9606e.emi Date: 2001-07-18 Time: 18:14:30 #### (CES Conducted) Trace: 15 Ref Trace: Condition: LINE Report No. : 01E9606 Test Engr. : MICHAEL HUNG Company : AAEON Technology Inc. EUT : AMB-280A/AT Test Config : EUT/ALL PERIPHERALS Type of Test: EN 55022 CLASS A LIMIT Mode of Op. : S-Video MODE No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 64 File#: 9606e.emi Date: 2001-07-18 Time: 20:41:52 #### (CES Conducted) Trace: 63 Ref Trace: Condition: NEUTRAL Report No. : 01E9606 Test Engr. : MICHAEL HUNG Company : AAEON Technology Inc. EUT : AMB-280A/AT EUT : AMB-280A/AT Test Config : EUT/ALL PERIPHERALS Type of Test: EN 55022 CLASS A LIMIT Mode of Op. : S-Video MODE No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 15 File#: 9606d.emi Date: 2001-07-16 Time: 20:15:31 CCS D-Site Condition: VERTICAL Report No. : 01E9606 Test Engr. : MICHAEL HUNG Company : AAEON Technology Inc. EUT : AMB-280A/AT Test Config : EUT/ALL PERIPHERALS Type of Test: EN 55022 CLASS A LIMIT Mode of Op. : RGB & TOUCH PANEL MODE | Page: I | Page | : | 1 | |---------|------|---|---| |---------|------|---|---| | | Freq | Read
Level | Factor | Level | Limit
Line | Over
Limit | Remark | |---|--|---|---|---|---|--|--| | | MHz | dBuV | dB | $\overline{\text{dBuV/m}}$ | $\overline{\text{dBuV/m}}$ | dB | | | 1
2
3
4
5
6
7
8
9 | 36.008
149.786
168.989
188.540
300.733
400.945
499.850
791.667
801.933 | 38.89
37.42
34.80
35.69
38.89
33.66
35.11
31.35
36.86 | -9.88
-7.11
-7.56
-9.32
-4.89
-2.84
-1.01
4.93
5.11 | 29.01
30.31
27.24
26.37
34.00
30.82
34.10
36.28
41.97 | 40.00
40.00
40.00
47.00
47.00 | -10.99
-9.69
-12.76
-13.63
-13.00
-16.18
-12.90
-10.72
-5.03 | Peak
Peak
Peak
Peak
Peak
Peak
Peak | No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1254 Data#: 18 File#: 9606d.emi Date: 2001-07-16 Time: 22:22:16 CCS D-Site Condition: HORIZONTAL Report No. : 01E9606 Test Engr. : MICHAEL HUNG Company : AAEON Technology Inc. EUT : AMB-280A/AT Test Config : EUT/ALL PERIPHERALS Type of Test: EN 55022 CLASS A LIMIT Mode of Op. : RGB & TOUCH PANEL MODE | Page: I | Page | : | 1 | |---------|------|---|---| |---------|------|---|---| | | Freq | Read
Level | | Level | Limit
Line | Over
Limit | Remark | |---|---------|---------------|-------|--------|------------------------------|---------------|--------| | | MHz | dBuV | dB | dBuV/m | $\overline{\mathtt{dBuV/m}}$ | dB | | | 1 | 150.344 | 34.60 | -7.10 | 27.50 | 40.00 | -12.50 | Peak | | 2 | 169.211 | 31.07 | -7.56 | 23.51 | 40.00 | -16.49 | Peak | | 3 | 186.139 | 35.21 | -9.03 | 26.18 | 40.00 | -13.82 | Peak | | 4 | 229.056 | 34.96 | -8.18 | 26.78 | 40.00 | -13.22 | Peak | | 5 | 399.900 | 32.14 | -2.86 | 29.28 | 47.00 | -17.72 | Peak | | 6 | 801.882 | 33.94 | 5.11 | 39.05 | 47.00 | -7.95 | Peak | | 7 | 880.518 | 29.73 | 6.13 | 35.86 | 47.00 | -11.14 | Peak |