User's Manual

Onboard VIA Eden 667/Ezra 800 MHz Half-Size PCISA CPU Card

FCC Statement

THIS DEVICE COMPLIES WITH PART 15 FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS: (1) THIS DEVICE MAY NOT CAUSE HARMFULINTERFERENCE. (2) THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION.

THIS EQUIPMENT HAS BEEN TESTED AND FOUND TO COMPLY WITH THE LIMITS FOR A CLASS "A" DIGITAL DEVICE, PURSUANT TO PART 15 OF THE FCC RULES. THESE LIMITS ARE DESIGNED TO PROVIDE REASONABLE PROTECTION AGAINTST HARMFUL INTERFERENCEWHEN THE EQUIPMENT IS OPERATED IN A COMMERCIAL ENVIRONMENT. THIS EQUIPMENT GENERATES, USES, AND CAN RADIATE RADIO FREQUENCY ENERGY AND, IFNOT INSTATLLED AND USED IN ACCORDANCE WITH THE INSTRUCTION MANUAL, MAY CAUSE HARMFUL INTERFERENCE TO RADIO COMMUNICATIONS. OPERATION OF THIS EQUIPMENT IN A RESIDENTIAL AREA IS LIKELY TO CAUSE HARMFUL INTERFERENCE IN WHICH CASE THE USER WILL BE REQUIRED TO CORRECT THE INTERFERENCE AT HIS OWN EXPENSE.

Copyright Notice

This document is copyrighted, Nov 2002. All rights are reserved. The original manufacturer reserves the right to make improvements to the products described in this manual at any time without notice.

No part of this manual may be reproduced, copied, translated, or transmitted in any form or by any means without the prior written permission of the original manufacturer. Information provided in this manual is intended to be accurate and reliable. However, the original manufacturer assumes no responsibility for its use, nor for any infringements upon the rights of third parties which may result from its use.

Acknowledgements

AMD is a trademark of Advanced Micro Devices, Inc.

AMI is a trademark of American Megatrends, Inc.

Award is a trademark of Award Software International, Inc.

Cyrix is a trademark of Cyrix Corporation.

IBM trademarks of International Business Machines Corporation.
 PC/AT trademarks of International Business Machines Corporation.
 PS/2 trademarks of International Business Machines Corporation.
 VGA trademarks of International Business Machines Corporation.

Intel and Pentium II are trademarks of Intel Corporation.

Microsoft Windows is a registered trademark of Microsoft Corp.

SMC is a trademark of Standard Microsystems Corporation.

RTL is a trademark of Realtek Semi-Conductor Co., Ltd.

C&T is a trademark of Chips and Technologies, Inc.

UMC is a trademark of United Microelectronics Corporation.

IIE is a trademark of Integrated Technology Express, Inc.

SiS is a trademark of Silicon Integrated Systems Corp.

VIA is a trademark of VIA Technology, Inc.

All other product names or trademarks are properties of their respective owners.

Printed in Taiwan Nov 2002

Manual SBC-657 2nd Edition CD-ROM 2087657011

A Message to the Customer

AAEON Customer Services

Each and every AAEON product is built to the most exacting specifications to ensure reliable performance in the harsh and demanding conditions typical of industrial environments. Whether your new AAEON equipment is destined for the laboratory or the factory floor, you can be assured that your product will provide the reliability and ease of operation for which the name AAEON has come to be known.

Your satisfaction is our primary concern. Here is a guide to AAEON customer services. To ensure you get the full benefit of our services, please follow the instructions below carefully.

Technical Support

We want you to get the maximum performance from your products. So if you run into technical difficulties, we are here to help. For the most frequently asked questions, you can easily find answers in your product documentation. These answers are normally a lot more detailed than the ones we can give over the phone.

So please consult this manual first. If you still cannot find the answer, gather all the information or questions that apply to your problem, and with the product close at hand, call your dealer. Our dealers are well trained and ready to give you the support you need to get the most from your AAEON products. In fact, most problems reported are minor and are able to be easily solved over the phone.

In addition, free technical support is available from AAEON engineers every business day. We are always ready to give advice on application requirements or specific information on the installation and operation of any of our products.

Product Warranty

AAEON warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by AAEON, or which have been subject to misuse, abuse, accident or improper installation. AAEON assumes no liability under the terms of this warranty as a consequence of such events.

Because of AAEON high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an AAEON product is defective, it will be repaired or replaced at no charge during the warranty period. For out-of-warranty repairs, you will be billed according to the cost of replacement materials, service time, and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- Collect all the information about the problem encountered. (For example, CPU type and speed, AAEON products used, other hardware and software used, etc.) Note anything abnormal and list any on-screen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return material authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Manual SBC-657 1st Edition CD-ROM 2087657010

Packing List

Before you begin installing your card, please make sure that the following materials have been shipped:

- 1. SBC-657 Half-Size Single Board Computer Card
- 2. Quick Installation Guide
- 3. One Support CD Contains the followings:
 - User manual
 - Related Drivers
 - Latest BIOS
- 4. Cables

Ordering Information

PN	Туре
1701010302	COM/Print Port cable kit
1701340702	FDD Cable
1701400453	IDE Cable 3.5" UDMA-100
1700060192	K/B & Mouse Cable
1709100201	USB Cable with two parts for port 1 and port 2
1709100201	USB Cable with two ports for port 3 and port 4 (optional)
1701100305	COM port with bracket for COM3 and COM4 (Optional)

Notice

Dear Customer,

Thank you for purchasing the SBC-657. This user manual is designed to help you to get the most out of the SBC-657, please read it thoroughly before you install and use the board. The product that you have purchased comes with an two-year limited warranty, but AAEON will not be responsible for misuse of the product. Therefore, we strongly urge you to first read the manual before using the product.

To receive the lastest version of the user manual, please visit our Web site at:

http://www.aaeon.com.tw

Contents

Chapter 1: General Information1
1.1 Introduction 2
1.2 Features
1.3 Specifications4
Chapter 2: Installation7
Locating Jumpers & Connectors8
Mechanical Drawing10
Jumpers and Connectors12
Setting Jumpers14
COM2 Ring signal select (JP1)15
CMOS Clear (JP2)15
RS-232/422/485 Setting (JP4)15
RS-232/422/485 Select (JP5)16
LCD Shift Clock Setting (JP6)16
LCD Voltage Setting (JP7)16
Power Connector (AT&ATX power)17
FAN Connector (CN1)18
Keyboard and Mouse Connector (CN2)18
Printer Port Connector (CN3)19
Floppy Connector (CN4)20
IR Connector (CN5)22
Front Panel Connector (CN6)22
EXT (CN7)22
IDE Connector (CN8)23
First USB Connector (CN9)24
Compact Flash Connector (CN10)25
Second USB Connector (CN11)26
LAN Connector (CN12)26
COM1 Connector (CN13)27
COM2 Connector (CN14)27
VGA Connector (CN15)28

LCD	Connector (CN16&CN17)	28
Chan	nnel 1 LVDS LCD Connector (CN18)	29
Chan	nnel 2 LVDS LCD Connector (CN19)	30
COM	13 Connector (CN21)	30
COM	14 Connector (CN22)	30
PISA	Connector (CN23)	30
Back	plane ATX Power Connector (CN24)	31
Inter	rnal Mouse Connector (CN25)	31
Inter	nal Keyboard Connector (CN26)	31
PC10	04 Connector (CON 1)	31
Chapter	3: Award BIOS Setup	32
3.1	Entering Setup	33
3.2	Control Keys	
3.3	Getting Help	35
3.4	The Main Setup Menu	
3.5	Standard CMOS Setup Menu	38
3.6	Advanced BIOS Features	
3.7	Advanced Chipset Features	47
3.8	Integrated Peripherals	51
3.9	Power Management Setup	55
3.10	Pnp/PCI Configurations	60
3.11	PC Health Status	62
3.12	Frequency/Voltage Control	62
3.13	Load Fail-Safe Defaults	63
3.14	Load Optimized Default	64
3.15	Set Supervisor Password	65
3.16	Set User Password	66
3.17	Save to CMOS and EXIT	67
Chap	oter 4:Drivers Installation	68
4.1	Drivers Installation 1	
4.2	Drivers Installation 2	70
4.3	Drivers Installation 3	
Appendix	x A: WatchDog Timer	72

General Information

This chapter gives background information on the SBC-657

Sections include:

- Board Introduction
- Board Features
- Board Specifications

1.1 Introduction

This new Half-size CPU Card SBC-657 with onboard VIA Eden 667 or Ezra 800MHz (fan required), offers great value in an embedded computing platform for low power, low profile, fanless, mobile industrial applied computing applications based using the PCISA CPU card / Slot PC standard.

With its superior computing capacity using low power, embedded, x86-compliant architecture for industrial embedded computers, the SBC-657 enables flexible system designs, including low profile and silent fanless devices (667MHz only). The VIA Eden Platform is designed for optimal heat dissipation and power consumption, allowing quiet-running fanless device designs and saving on energy costs and battery life. With this ultimate feature onboard SBC-657 saves energy in mobile designs.

Features onboard included: Integrated 4X 2D/3D Graphic Controller, a 10/100Base-T Fast Ethernet port, and 18/36-bit LCD Panel support. Its design is based on the half-size CPU card form factor and supports ISA bus, PC/104 expansion. Other on-board features include 4 COMs / 1 Parallel / 4 USBs / 1 IrDA Port. The SSD solution supports CompactFlash cards. Power management can be flexible with its ATX or AT power support.

This product uses a VIA Twister-T chip VT8606 with Integrated 2D/3D/Video Accelerator. The VGA/LCD interface has a frame buffer of up to 32 MB using system memory. It can display both CRT and Flat Panel (TFT) simutaneously. The SBC-657 supports single 10/100Mbps Ethernet connections through RJ-45 connectors. The SBC-657 can be the best fanless solution if Eden 667MHz CPU is chosen. This is perfect for target market segments such as modern gateway devices, VPNs, firewalls, or machine controllers, especially for *Always on* devices.

1.2 Features

- Onboard VIA Ezra(800MHz)/Eden(667MHz) EBGA mobile CPU
- Integrated AGP 4X 2D/3D Graphics Accelerator
- Supports CRT and 18/36-bit TFT Panels
- 36 bit Dual channel LVDS interface onboard
- ●Type II Compact Flash storage devices supported
- Single 10/100Base-T Fast Ethernet
- Supports UDMA100
- AT/ATX Power management

1.3 Specifications

♦CPU VIA C3 Ezra (800MHz)/ Eden(667MHz)

mobile EBGA CPU (with system bus frequencies

of 133MHz)

❖BIOS Award 256KB Flash BIOS

♦ Chipset VIA VT8606/VT82C686B

❖Memory Onboard one 144-pin SODIMM socket supports up

512MB SDRAM

❖Enhanced IDE Supports up to two IDE devices. BIOS auto-detect

Supports PIO mode 5 and Bus Master. Supports Ultra DMA100 mode with data transfer rate up to

100MB/sec.

❖FDD interface Supports up to two floppy disk drives, 5.25 inch

(360KB and 1.2 MB) and/or 3.5inch (720KB, 1.44MB

and 2.88MB)

❖ Parellel Port Can be configured to LPT1, LPT2, LPT3 or disabled.

Supports SPP, ECP, EPP.

❖ Serial Port Winbond 83977EF, three RS-232 serial ports and one

RS-232/422/485 serial ports. Ports can be configured as COM1, COM2, COM3, COM4, or disabled indi

vidually. (16C550 equivalent)

❖IrDA port Supports one IrDA Tx/Rx header

❖KB/Mouse connector One 6-pin mini DIN connector supports PS/2

Keyboard and PS/2 mouse.

USB connectors Two 5 x 2 header onboard support four USB

ports

*Battery Lithium battery for data retention

❖ Watchdog Timer Can generate a system reset. Software selectable

time-out interval (1 sec.~255 sec, 1 sec/step, 1

min~255 min, 1min/step.)

❖DMA 7 DMA channels (8237 equivalent)

❖ Interrupt 15 interrupt levels (8259 equivalent)

*Power management Supports ATX or AT power supply. Support power

saving and doze/standby/suspend modes.

Flat Panel/CRT Interface

Chipset VIA VT8606 integrated Graphic Accelerator

*Display memory Shared memory up to 32MB

❖ Display Type Supports non-interlaced CRT and up to 36-bit Dual

channel TFT LCD. Can display both CRT and flat

panel(TFT) simultaneously

*Resolution Up to 1280 x 1024 @24bpp colors

Ethernet Interface

❖ Chipset RTL 8139C PCI-bus Ethernet controller

❖Interface Onboard one 10/100Base-T RJ-45 connectors

Expansion Interface

❖PC/104 Connector One 16-bit 104-pin connector onboard

❖SDD Interface One type II Compact Flash Socket

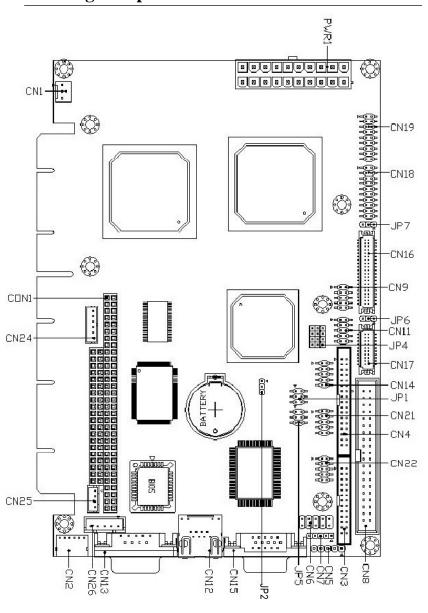
*****PCISA

Mechanical and Environmental

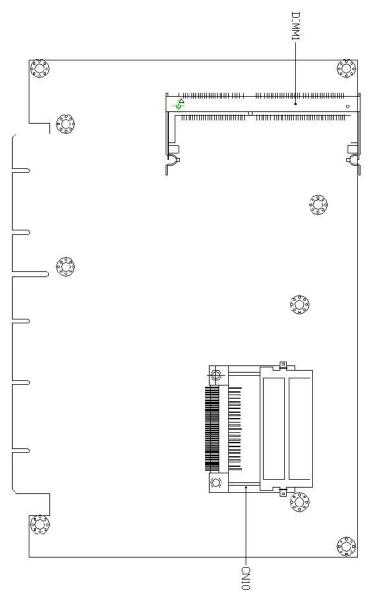
❖Power Supply voltage AT or ATX type

❖ Operating temperature 32 to 140 degrees F (0 to 60 degrees C)

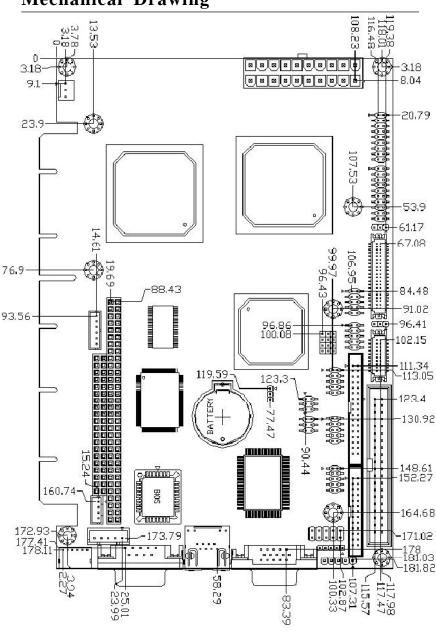
❖ Board Size 7.3 (L) x 4.8 (W) (185mm x 122mm)


❖ Weight 0.66 lb. (0.3 Kg)

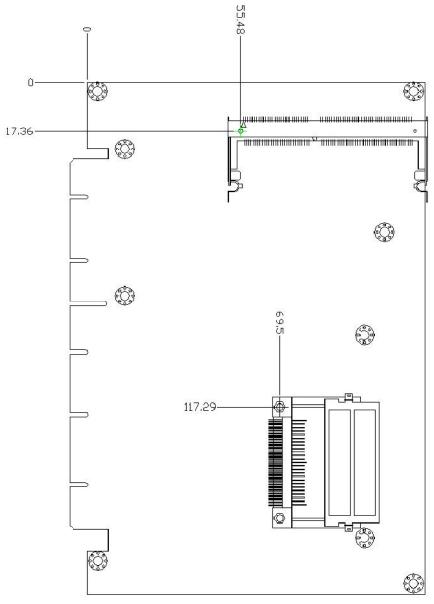
2


Installation

This chapter describes how to set up the main board hardware, including instructions on setting jumpers and connecting peripherals, switches, and indicators. Be sure to read all the safety precautions before you begin the installation procedure.


Locating Jumpers & Connectors

Locating Jumpers & Connectors (Soldering Side)



Mechanical Drawing

10 SBC-657 User's Manual

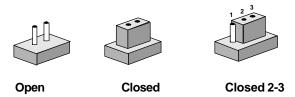
Mechanical Drawing (Soldering Side)

SBC-657 User's Manual

Jumpers and Connectors

Connectors on the board are used to connect to external devices such as hard disk drives, a keyboard, or floppy drives. In addition, the board has a number of jumpers that allow you to configure your system to suit your application.

The function of each jumper and connector are listed below:


Jumpers		
Label	Function	
JP1	COM2 Ring signal select	
JP2	Clear CMOS	
JP4	RS-232/422/485 setting	
JP5	RS-232/422/485 select	
JP6	LCD shift clock setting	
JP7	LCD voltage setting	

Connectors

ver Connector (ATX & AT Power) N connector /board and Mouse connector
/board and Mouse connector
nter port connector
ppy connector
connector
nt panel connector
ion EXT PME
connector
t USB connector
mpactFlash Socket
cond USB connector
N connector
M1 connector
M2 connector
A connector
O connector
annel 1 LVDS LCD connector
annel 2 LVDS LCD connector
M3 connector
M4 connector
A Connector
kplane ATX Power Connector
rnal Mouse Connector
rnal Keyboard Connector
104 Connector

Setting Jumpers

Configure your card to meet the needs of your applications by setting jumper which is the simplest electric switch. It consists of two metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To close a jumper, connect the pins with the clip. To "open" a jumper, please remove the clip. Sometimes a jumper will have three pins, labeled 1, 2, and 3. In this case you would connect either pins 1 and 2 or 2 and 3.

A pair of needle-nose pliers may be helpful when working with jumpers.

If you have any doubts about the best hardware configuration for your applications, contact your local distributor or sales representative before you make any changes.

Pin position

- 1 🗆 🔾 2
- 3 0 0 4
- 5 0 0 6
- 7 0 0 8

COM2 Ring signal select (JP1)

Ring *	5V	12V
1 -2	1 0 0 2	1 0 0 2
3 \bigcirc \bigcirc 4	3 •• 4	3 0 0 4
5 0 0 6	5 0 0 6	5 6

Clear CMOS (JP2)

JP2 is used when CMOS data needs to be reset. To reset , cap 2-3 closed for few seconds, then move the jumper back to 1-2 closed.

Normal*	Clear	
1	1 🔾	
2	2	
3 🔾	3	
*default		

RS-232/422/485 Setting (JP4)

RS-232*	RS-422/RS485	
1 •• 0 3	1 0 • 3	
4	4 0 6	
7 \bigcirc 9	7 🔾 🕶 9	
$10 \bigcirc \bigcirc 12$	10 🔾 🕦 12	

*default

RS-232/422/485 Setting (JP5)

RS-232 *	RS-422	RS-485
1 - 2	1 0 0 2	1 0 0 2
3 🔾 🔾 4	3 •• 4	3 0 0 4
5 ○ ○ 6	5 🔾 🔾 6	5 • 6
*default		

LCD Shift Clock Select (JP6)

SHFCLK*	ASHFCLK	
1 2 3 ×default	1	

LCD Voltage Setting (JP7)

5V	3.3V*	
1 2 3 ○	1 O 2 1 3	

^{*}default

Power Connectors (AT&ATX Power)

The ATX power supply uses 20-pin connector and the AT power supply uses 6-pin connector as shown in the table. Please work according to the pin assignments and ensure they are plugged in the right direction.

ATX Power Connector Pin Assignments (PW1)

		-	` '	
Pin	Signal	Pin	Signal	
1	+3.3V	11	+3.3V	
2	+3.3V	12	-12V	
3	GND	13	GND	
4	+5V	14	PWRONX	
5	GND	15	GND	
6	+5V	16	GND	
7	GND	17	GND	
8	PWROK	18	-5V	
9	+5VSB	19	+5V	
10	+12V	20	+5V	

Pin	Signal	Pin	Signal	
1	NC	7	GND	
2	VCC	8	GND	
3	+12V	9	-5V	
4	-12V	10	VCC	
5	GND	11	VCC	
6	GND	12	VCC	

FAN Connector (CN1)

FAN Connector (CN1)			
Pin	Signal		
1	GND		
2	FAN VCC		
3	CPU FAN		

Keyboard and Mouse Connector (CN2)

The mainboard BIOS Advanced setup menu allows you to select "Present" or "Absent" under the "System Keyboard" section, allows no-keyboard operation in embedded system applications without the system halting under POST (power-on-self-test).

Keyboard and Mouse Connector (CN2)

Parallel Port Connector (CN3)

Printer port connector				
Pin	Signal	Pin	Signal	
1	STB#	2	AUTOFD#	
3	PTD0	4	ERROR#	
5	PTD1	6	PINIT#	
7	PTD2	8	SLCTIN#	
9	PTD3	10	GND	
11	PTD4	12	GND	
13	PTD5	14	GND	
15	PTD6	16	GND	
17	PTD7	18	GND	
19	ACK#	20	GND	
21	BUSY	22	GND	
23	PE	24	GND	
25	SLCT	26	NC	

Floppy Drive Connector (CN4)

With support of different types of floppy, you can simply adopt any of the combinations of 5.25" (360 KB and 1.2 MB) and/or 3.5" (720 KB, 1.44 MB, and 2.88 MB) drives onto the mainboard.

A 34-pin daisy-chain drive connector cable is required for a dual-drive system. On one end of the cable is a 34-pin flat-cable connector. On the other end are two sets of floppy disk drive connectors. Each set consists of a 34-pin flat-cable connector (usually used for 3.5" drives) and a printed-circuit board connector (usually used for 5.25" drives).

Wire number 1 on the cable is normally red or blue, and the other wires are usually gray.

Connecting the floppy drive

- 1. Plug the 34-pin flat-cable connector into CN4. Make sure that the red or blue wire corresponds to pin 1 on the connector.
- 2. Attach the appropriate connector on the other end of the cable to the floppy drive(s). You can use only one connector in the set. The set on the end (after the twist in the cable) connects to A: drive. The set in the middle connects to B: drive.
- 3. If you are connecting a 5.25" floppy drive, line up the slot in the printed circuit board with the blocked-off part of the cable connector.

If you are connecting a 3.5" floppy drive, you may have trouble determining which pin is pin number 1. Look for a number printed on the circuit board indicating pin number 1. Also, the connector on the floppy drive connector may have a slot. When the slot is up, pin number 1 should be on the right. Check the documentation that came with the drive for more information.

If you desire, connect the B: drive to the connectors in the middle of the cable as described above.

Floppy Drive Connector (CN4)

Floppy Drive Connector (CN4)

- 1: 1: 7		,	
Pin	Signal	Pin	Signal
1	GND	2	DRVDEN 0
3	GND	4	NC
5	GND	6	DRVDEN 1
7	GND	8	INDEX#
9	GND	10	MTR#0
11	GND	12	DS#1
13	GND	14	DS#0
15	GND	16	MTR#1
17	GND	18	DIR#
19	GND	20	STEP#
21	GND	22	WDATA#
23	GND	24	WGATE#
25	GND	26	TRAK#0
27	GND	28	WRTPRT#
29	GND	30	RDATA#
31	GND	32	HDSEL#
33	GND	34	DSKCHG#

IR connector (CN5)

The IR connector (CN5) can be configured to support wireless infrared module, with this module and application software such as laplink or Win95/98 Direct Cable connection, user can transfer files to or from laptops, notebooks, PDA, and printers. This connector supports HPSIR (115.2Kbps, 2 meters), ASK-IR (56Kbps) and Fast.

Install infrared module onto IrDA connector and enable infrared function from BIOS setup. And make sure to have correct orientation when you plug onto IR connector (CN5).

IR Connector (CN5)

Pin	Signal	
1	VCC	
2	NC	
3	IRRX	
4	GND	
5	IRTX	

Front Panel Connector (CN6)

Front Panel Connecotr (CN6)

Pin	Signal	Pin	Signal	
1	GND	2	PWRBTN#	
3	HDDLED#	4	VCC	
5	BEEPR	6	VCC	
7	GND	8	VCC	
9	GND	10	RSTIN#	

Option EXT PME (CN7)

EXT (CN7)

Pin	Signal	
1	VCC	
2	GND	
3	PME#	
4	SMBDATA	
5	SMBCLK	

IDE Hard Drive Connector (CN8)

You can attach up to two Enhanced Integrated Device Electronics hard disk drives to CN8. The IDE controller of SBC-657 uses a PCI local bus interface. This advanced interface supports faster data transfer.

Connecting the hard drive

Connecting to ATA66/100 drives requires a 80 pins wire conductor IDE cable and an adaptor to connect to the slim hard drive.

Wire number 1 on the cable is normally red or blue, and the other wires are usually gray.

- 1. Connect one end of the cable to CN8. Make sure that the red wire corresponds to pin 1 on the connector
- 2. Plug the other end of the cable to the Enhanced IDE hard drive, with pin 1 on the cable corresponding to pin 1 on the hard drives. (see your hard drive's documentation for the location of the connector).

Connect a second drive as described above.

For ATA66/100, if you install two drives, the black end of the cable connect to Master drive and the grey end connect to the Slave drive.

IDE hard drive Connector (CN8)

IDE Hard Drive Connector (CN8)				
Pin	Signal	Pin	Signal	
1	IDERST#	2	GND	
3	PDD7	4	PDD8	
5	PDD6	6	PDD9	
7	PDD5	8	PDD10	
9	PDD9	10	PDD11	
11	PDD3	12	PDD12	
13	PDD2	14	PDD13	
15	PDD1	16	PDD14	
17	PDD0	18	PDD15	
19	GND	20	NC	
21	PDREQ	22	GND	
23	PDDIOW#	24	GND	
25	PDDIOR#	26	GND	
27	PDDRDY	28	PDCSEL	
29	PD_DACK#	30	GND	
31	IRQ14	32	NC	
33	PDDA1	34	PD_80P	
35	PDDA0	36	PDDA2	
37	PDDCS#1	38	PDDCS#3	
39	HDDLED#	40	GND	

First USB Connector (CN9)

Signal	Pin	Signal	
UVCC0	2	GND	
USBD#0	4	GND	
USBD0	6	USBD1	
GND	8	USBD#1	
GND	10	UVCC1	
	UVCC0 USBD#0 USBD0 GND	UVCC0 2 USBD#0 4 USBD0 6 GND 8	UVCC0 2 GND USBD#0 4 GND USBD0 6 USBD1 GND 8 USBD#1

Compact Flash Connector (CN10)

Compact Flash Connector (CN10)

Compact Flash Connector (CNTO)				
Pin	Signal	Pin	Signal	
1	GND	26	GND	
2	SDD3	27	SDD11	
3	SDD4	28	SDD12	
4	SDD5	29	SDD13	
5	SDD6	30	SDD14	
6	SDD7	31	SDD15	
7	SDCS#1	32	SDCS#3	
8	GND	33	GND	
9	GND	34	SDIOR#	
10	GND	35	SDIOW#	
11	GND	36	VCC	
12	GND	37	IRQ15	
13	VCC	38	VCC	
14	GND	39	CSEL#	
15	GND	40	N/C	
16	GND	41	IDERST#	
17	GND	42	SDRDY	
18	SDA2	43	NC	
19	SDA1	44	VCC	
20	SDA0	45	DASP#	
21	SDD0	46	PDIAG#	
22	SDD1	47	SDD8	
23	SDD2	48	SDD9	
24	N/A	49	SDD10	
25	GND	50	GND	

Second USB Connector (CN11)

SBC-657 provides four USB (Universal Serial Bus) interface, which give complete plug and play, hot attach/detach for up to 127 external devices. The USB interfaces comply with USB specification Rev. 1.1, and can be disabled in the system BIOS setup.

Second USB Connector (CN11)

		•	,	
Pin	Signal	Pin	Signal	
1	UVCC2	2	GND	
3	USBD#2	4	GND	
5	USBD2	6	USBD3	
7	GND	8	USBD#3	
9	GND	10	UVCC3	

100Base-T Ethernet Connector (CN12)

This 100Base-T Ethernet connector is a standard RJ-45 connector. The onboard RTL8139C fast Ethernet controller supports 10Mbps or 100 Mbps N-way auto-negotiation operation.

Lan Connector (CN12)

Pin	Signal	Pin	Signal	
1	TX+	13	LVCC3	
2	TX-	14	SLED	
3	RX+	15	LVCC3	
4	NC	16	ALED	
5	NC	12	GND	
6	RX-	11	GND	
7	NC	10	NC	
8	NC	9	NC	

Serial port / COM 1 (CN13)

SBC-657 offers four serial ports, three RS-232 and one RS-232/422/485, which allow you to connect them to serial devices (mouse, printers, etc.).

Com 1 (CN13)

	· ,	
Pin	Signal	
1	NDCD1	
6 2 7 3	NDSR1	
2	NRXD1	
7	NRTS1	
3	NTXD1	
8	NCTS1	
4	NDTR1	
8 4 9 5	NRI1	
5	GND	

Serial Port / COM 2 (CN14)

SBC-657 offers four serial ports, three RS-232 and one RS-232/422/485, which allow you to connect them to serial devices (mouse, printers, etc.).

COM 2 (CN14)

PIN	Signal	PIN	Signal
1	CM2-1	2	CM2-2
3	CM2-3	4	CM2-4
5	GND	6	NDSR2
7	NRTS2	8	NCTS2
9	NRI2	10	NC

SBC-657

VGA Connector (CN15)

VGA Connector (CN15)

1 011 001111010101 (011110)					
Pin	Signal	Pin	Signal		
1	RED	9	VGAVCC		
2	GREEN	10	GND		
3	BLUE	11	NC		
4	NC	12	SDA		
5	GND	13	HSYNC		
6	GND	14	VSYNC		
7	GND	15	SCL		
8	GND				

LCD Connector (CN16)

LCD Connector (CN16)

Signal	Pin	Signal	
VDDS5	2	VDDS5	
GND	4	GND	
VDDS3	6	VDDS3	
ENABKL	8	GND	
NC	10	NC	
B0	12	B1	
B2	14	B3	
B4	16	B5	
NC	18	NC	
G0	20	G1	
G2	22	G3	
G4	24	G5	
NC	26	NC	
R0	28	R1	
R2	30	R3	
R4	32	R5	
GND	34	GND	
VSHCLK	36	FLM	
DE	38	LP	
NC	40	ENAVEE	
	GND VDDS3 ENABKL NC B0 B2 B4 NC G0 G2 G4 NC R0 R2 R4 GND VSHCLK DE	VDDS5 2 GND 4 VDDS3 6 ENABKL 8 NC 10 B0 12 B2 14 B4 16 NC 18 G0 20 G2 22 G4 24 NC 26 R0 28 R2 30 R4 32 GND 34 VSHCLK 36 DE 38	VDDS5 2 VDDS5 GND 4 GND VDDS3 6 VDDS3 ENABKL 8 GND NC 10 NC B0 12 B1 B2 14 B3 B4 16 B5 NC 18 NC G0 20 G1 G2 22 G3 G4 24 G5 NC 26 NC R0 28 R1 R2 30 R3 R4 32 R5 GND 34 GND VSHCLK 36 FLM DE 38 LP

LCD Connector (CN17)

LCD Connector (CN17)

Pin	Signal	Pin	Signal	
1	GND	2	GND	
3	B10	4	B11	
5	B12	6	B13	
7	B14	8	B15	
9	G10	10	G11	
11	G12	12	G13	
13	G14	14	G15	
15	R10	16	R11	
17	R12	18	R13	
19	R14	20	R15	

Channel 1 LVDS LCD Connector (CN18)

Channel 1 LVDS LCD Connector (CN18)

Pin	Signal	Pin	Signal	
1	TX1OUT1	2	TX1OUT#1	
3	GND	4	GND	
5	TX1CLK	6	TX1CLK#	
7	GND	8	PPVCC	
9	PPVCC	10	PPVCC	
11	TX1OUT2	12	TX1OUT#2	
13	GND	14	GND	
15	TX1OUT0	16	TX1OUT#0	
17	NC	18	NC	
19	ENVDD	20	NC	

SBC-657

Channel 2 LVDS LCD Connector (CN19)

Channel 2 LVDS LCD Connector (CN19)

		Signal	
TX2OUT1	2	TX2OUT#1	
GND	4	GND	
TX2CLK	6	TX2CLK#	
GND	8	PPVCC	
PPVCC	10	PPVCC	
TX2OUT2	12	TX2OUT#2	
GND	14	GND	
TX2OUT0	16	TX2OUT#0	
NC	18	NC	
	GND TX2CLK GND PPVCC TX2OUT2 GND TX2OUT0	GND 4 TX2CLK 6 GND 8 PPVCC 10 TX2OUT2 12 GND 14 TX2OUT0 16	GND 4 GND TX2CLK 6 TX2CLK# GND 8 PPVCC PPVCC 10 PPVCC TX2OUT2 12 TX2OUT#2 GND 14 GND TX2OUT0 16 TX2OUT#0

COM 3 Connector (CN21)

COM 3 Connector (CN21)

		,		
Pin	Signal	Pin	Signal	
1	NDCD3	2	NRXD3	
3	NTXD3	4	NDTR3	
5	GND	6	NDSR3	
7	NRTS3	8	NCTS3	
9	NRI3	10	NC	

COM 4 Connector (CN22)

COM 4 Connector (CN22)

Pin	Signal	Pin	Signal	
1	NDCD4	2	NRXD4	
3	NTXD4	4	NDTR4	
5	GND	6	NDSR4	
7	NRTS4	8	NCTS4	
9	NRI4	10	N/C	

PISA Connector (CN23)

Backplane ATX Power Connector (CN24)

Backplane ATX Power connector (CN24)

Pin	Signal	· · · · · · · · · · · · · · · · · · ·
1	N/C	
2	GND	
3	N/C	
4	GND	
5	PS ON	
6	VCCSB	

Internal Mouse Connector (CN25)

Internal Mouse Connector (CN25)

Pin	Signal	
1	MCK	
2	MDT	
3	GND	
4	VCC	

Internal Keyboard Connector (CN26)

Internal Keyboard Connector (CN26)

Pin	Signal	
1	KCK	
2	KDT	
3	NC	
4	GND	
5	KBVCC	

CON1 PC/104 Connector

Award BIOS Setup

This chapter describes how to configure the BIOS for the system.

BIOS CONFIGURATION 3.

Award's BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. This type of information is stored in battery-backed CMOS SRAM so that it retains the Setup information when the power is turned off.

Entering Setup 3.1

To Enter Setup Before Boot Press

Power ON the computer and press immediately will allow you to enter Setup. The other way to enter Setup is to power on the computer, when the below message appears briefly at the bottom of the screen during the POST (Power On Self Test), press key.

If the message disappears before you respond and you still wish to enter Setup, then please power off/on the board or reset the system by shorting pin9-10 on CN6.

Control Keys 3.2

These keys helps you navigate in Award BIOS:

Up arrow	Move to previous item		
Down arrow	Move to next item		
Left arrow	Move to the item in the left hand		
Right arrow	Move to the item in the right hand		
Esc	Main Menu: Quit and not save changes into CMOS RAM		
	Status Page Setup Menu and Option Page Setup Menu: Exit current page and return to Main Menu		
PgUP/+	Increase the numeric value or make changes		
PgDn/-	Decrease the numeric value or make changes		
F1	General help, only for Status Page Setup Menu and Option Page Setup Menu		
F2	Item Help		
F3	Reserved		
F4	Reserved		
F5	Restore the previous CMOS value from CMOS, only for Option Page Setup Menu		
F6	Load the default CMOS RAM value from BIOS default table, only for Option Page Setup Menu		
F7	Load the default		
F8	Reserved		
F9	Reserved		
F10	Save all the CMOS changes		

3.3 **Getting Help**

3.3.1 Main Menu

Figure 3.1 shows the Main Setup Menu screen.

3.3.2 Status Page Setup / Option Page Setup Menu

Press F1 to pop up a small help window that describes the appropriate keys to use and the possible selections for the highlighted item. To exit the Help Window press Esc or the F1 key again.

In Case of Problems

If, after making and saving system changes with Setup, you discover that your computer is no longer able to boot, the Award **BIOS** supports an override CMOS settings that helps you to reset the system back to default configuration. (Please refer to P.15 for JP2 - Clear CMOS setting.)

The Best Advice

The best advice is to alter only settings that you thoroughly understand. In particular, DO NOT change settings in Advanced Chipset Features unless you understand what you are doing. The Chipset defaults have been carefully chosen by Award Software or your system manufacturer for the best performance and reliability. Even a seemingly small change to the Chipset setup may cause the system to become unstable.

The displayed configuration charts in this chapter show you all the default settings of SBC-657.

3.4 The Main Setup Menu

Once you enter Award BIOS CMOS Setup Utility, the Main Menu (Figure 3.1) will appear on the screen. The Main Menu allows you to select setup items and press <Enter> to accept or enter the sub-menu.

Figure 3.1: The Main Setup Menu

Standard CMOS Features

Use this menu for basic system configuration. (Date, time, IDE, etc.)

Advanced BIOS Features

Use this menu enables you to set all the enhanced features available on your system.

Advanced Chipset Features

Use this menu to change the values in the chipset registers and optimize your system's performance.

Integrated Peripherals

The menu enables you to specify all onboard peripherals settings. (Primary slave, secondary slave, keyboard, mouse etc.)

Power Management Setup

Use this menu to specify your settings for power management.

PnP/PCI Configuration

This setup page includes all the configurations of PCI & PNP ISA resources.

PC Health Status

Frequency/Voltage Control

Use this menu to specify your settings for frequency/voltage control.

Load Fail-Safe Defaults

Use this menu to load the BIOS default values for the minimal/ stable performance for your system to operate.

Load Optimized Defaults

Use this menu to load the BIOS default values that are factory settings for optimal performance system operations.

Set Supervisor Password

Use this menu to set Supervisor Passwords.

Set User Password

User this menu to set User Passwords.

Save and Exit Setup

Save CMOS value changes to CMOS and exit setup.

Exit Without Saving

Abandon all CMOS value changes and exit setup.

3.5 Standard CMOS Setup Menu

Figure 3.2 Standard CMOS Setup Menu

This standard setup menu allows users to configure system components such as the date, time, hard disk drive, floppy drive, display, and memory. Online help for each field can be accessed by pressing F1. Use the arrows to highlight the item and then use the <PgUp> or <PgDn> keys to select the value you want in each item.

3.5.1 Date and Time Configuration

The date format is <day>, <date>, <month>, <year>. Press <F3> to the show the calendar.

Press the left or right arrow key to move to the desired field (date, month, year). Press the PgUp/- or PgDn/+ key to increment the setting, or type the desired value into the field.

The time is culculated base on the 24-hour military-time clock. For example, 1 p.m. is 13:00:00 hours. Press the left or right arrow key to move to the desired field. Press the PgUp/- or PgDn/+ key to increment the setting, or type the desired value into the field.

3.5.2 HARD DISKS

The BIOS supports up to four IDE drives. This section does not show information about other IDE devices, such as a CD-ROM drive, or about other hard drive types, such as SCSI drives.

User Arrow key to select the menu of the page meanwhile you can also get Item Help at right hand side of the screen. To Enter Hard Drive setting page press <Enter> to the next page

NOTE: We recommend that you select type AUTO for all drives.

The BIOS can automatically detect the specifications and optimal operating mode of almost all IDE hard drives. When you select type AUTO for a hard drive, the BIOS detects its specifications

If you do not want to select drive type AUTO, other methods of selecting the drive type are available:

1. NONE: No drive type to be selected

2. Manual: This will allow you to manually set the drive

type you are using in your system. (See

Below)

Mode: Types of ACCESS: Auto, Large, CHS or LBA

Auto: The BIOS automatically determines the optimal

mode.

CHS: This allows the user to enter their own hardware

values

Large: For drives that do not support LBA and have more

than 1024 cylinders.

LBA: (Logical Block Addressing) During drive access, the

> IDE controller transforms the data address described by sector, head, and cylinder number into a physical block address, significantly improving data transfer rates. For drives with greater than 1024 cylinders.

Drive specifications

Here is a brief explanation of drive specifications:

Type: The BIOS contains a table of predefined drive types.

> Each defined drive type has a specified number of cylinders, number of heads, write precompensation factor, landing zone, and number of sectors. Drives whose specifications do not accommodate any predefined type are classified as type USER.

Size: Disk drive capacity (approximate). Note that this size

is usually slightly greater than the size of a formatted

disk given by a disk-checking program.

Cyls: Number of cylinders

Head: Number of heads

Precomp: Write precompensation cylinder

Landz: Landing zone

Sector: Number of sectors

3.5.3 Drive A / Drive B type

None	No diskette drive installed	
360K, 5.25 in	5-1/4 inch PC-type standard drive; 360 kilobyte capacity	
1.2M, 5.25 in	5-1/4 inch AT-type high-density	
	drive; 1.2 megabyte capacity	
720K, 3.5 in	3-1/2 inch double-sided drive;	
	720 kilobyte capacity	
1.44M, 3.5 in	3-1/2 inch double-sided drive;	
	1.44 mega byte capacity	
2.88M, 3.5 in	3-1/2 inch double-sided drive;	
	2.88 mega byte capacity	

3.5.4 Halt On

During the power-on-self-test (POST), the computer stops if the BIOS detects a hardware error. You can tell the BIOS to ignore certain errors during POST and continue the boot-up process.

The choices: All, But Keyboard; All, But Diskette; All, But Disk/Key; All Errors; No Errors.

3.5.5 Select Display Device

SBC-657 can be used with various visual display peripherals. It can also display the both CRT and Flat Panel(TFT or DSTN) simultaneously. This function allows the end user to select the type of visual display peripheral they are incorporating with the SBC-657 single board computer.

The choices: LCD, CRT, LCD+CRT

3.5.6 Panel Type

SBC-657 can be used with various display panels. Please select the type of panel you are incorporating with our single board computer. Consult your panel manual for detail information.

The choices: 640x480 TTL, 800x600 TTL, 1024x768 TTL, 800x600 1ch LVDS, 1024x768 1ch LVDS, 1024 x 768 2ch LVDS

3.6 **Advanced BIOS Features**

Figure 3.3 Advanced BIOS Features

Virus Warning

This category flashes on the screen. During and after the system boots up, any attempt to write to the boot sector or partition table of the hard disk drive will halt the system, in the mean time, you can run anti-virus program to locate the problem.

Enable: Activate automatically when the system boots up

causing a warning message to appear when anything attempts to access the boot sector or hard disk

partition table

Disable: **Default.** No warning message to appear when

anything attempts to access the boot sector or hard

disk partition table.

3.6.2 CPU Internal Cache/External Cache

Cache memory is additional memory that is much faster than conventional DRAM (system memory). When the CPU requests data, the system transfers the requested data from the main DRAM into cache memory, for even faster access by the CPU. The External Cache field may not appear if your system does not have external cache memory.

The choices: Enabled(Default), Disabled.

3.6.3 CPU L2 Cache ECC Checking

When you select Enabled, memory checking is enable when the external cache contains ECC SRAMs.

The choices: Enabled (Default), Disabled.

3.6.4 Quick Power On Self Test

Select Enabled to reduce the amount of time required to run the power-on-self-test (POST). A quick POST skips certain steps.

The choices: Enabled(Default), Disabled.

3.6.5 First/Second/Third Boot Device

The BIOS attempts to load the operating system from the devices in the sequence selected in these items.

The choices:

First Boot Device: Disable, Floopy(Default), LS120, HDD-0, SCSI, CDROM, HDD-1, HDD-2, ZIP100

Second Boot Device: Same as above. Default value - HDD0

Third Boot Device: Same as above. Default value - LS120

3.6.6 Boot Other Device

If your boot device is not included in the following choices Floppy, LS120, HDD0, HDD1, HDD2, SCSI, CDROM, you may set First/Second/Third Boot devices to Disable and enable the BOOT Other Device function. The system will automatically boot the other device.

The choices: Enabled (Default), Disabled.

3.6.7 Swap Floppy Drive

This field is effective only in systems with two floppy drives. Selecting enabled assigns physical drive B to logical drive A, and physical drive A to logical drive B.

The choices: Enabled, Disabled(Default).

3.6.8 Boot Up Floppy Seek

During POST, BIOS will determine if the floopy disk drive installed is 40 or 80 tracks. 360K type is 40 tracks while 720K, 1.2M and 1.44M are all 80 tracks.

The choices: Enabled(Default), Disabled.

3.6.9 Boot Up NumLock Status

Toggle between On or Off to control the state of the NumLock key when the system boots. When toggled On, the numeric keypad generates numbers instead of controlling cursor operations.

The choices: On(Default), Off.

3.6.10 Gate A20 Option

Gate A20 refers to the way the system addresses memory above 1 MB (extended memory). When set to Fast, the system chipset controls Gate A20. When set to Normal, a pin in the keyboard controller controls Gate A20. Setting Gate A20 to Fast improves system speed, particularly with OS/2 and Windows.

The choices: Fast(Default), Normal.

3.6.11 Typematic Rate Setting

Key strokes repeat at a rate determined by the keyboard controller. When enabled, the typematic rate and typematic delay can be selected.

The choices: Enabled, Disabled(Default)

Typematic Rate

When the typematic rate setting is enabled, you can select a typematic rate (the rate at which character repeats when yu hold down a key) of 6, 8, 10, 12, 15, 20, 24, 30.

■ Typematic Delay

When the typematic rate setting is enabled, you can select a typematic delay (the delay before key strokes begin to repeat) of 250, 500, 750 or 1000 milliseconds.

3.6.12 Security Option

If you have set a password, select whether the password is required every time the System boots, or only when you enter Setup.

The choices: Setup(Default), Sysytem.

3.6.13 OS Select For DRAM>64MB

Select the operating system that is running with greater than 64MB or RAM on the system.

The choices: Non-OS2(Default), OS2

3.6.14 Repeat No FDD For WIN 95

The Choices: Yes(Default), No

3.6.15 Video BIOS Shadow

Software that resides in a read only memory (ROM) chip on a device is called firmware. The Award BIOS permits shadowing of firmware such as the system BIOS, video BIOS, and similar operating instructions that come with some expansion peripherals such as, for example, a SCSI adaptor.

Shadowing copies firmware from ROM into system RAM, where the CPU can read it through the 16-bit or 32-bit DRAM bus. Firmware not shadowed must be read by the system through the 8-bit X-bus. Shadowing impoves the performance of the system BIOS and similar ROM firmware for expansion peripherals. but it also reduces the amount of high memory (640 KB to 1 MB) available for loading device drivers, etc.

Enable shadowing into each section of memory separately. Many system designers hardwire shadowing of the system BIOS and eliminate a System BIOS Shadow option.

Video BIOS shadows into memory are C0000-C7FFF. The remaining areas shown on the BIOS Features Setup screen may be occupied by other expansion card firmware. If an expansion peripheral in your system contains ROM-based firmware, you need to know the address range the ROM occupies to shadow it into the correct area of RAM.

The choices: Enabled(Default), Disabled.

These categories determine whether optional ROM will be copied to RAM by 16K byte.

C8000-CBFFF Shadow: Disabled CC000-CFFFF Shadow: Disabled D0000-D3FFF Shadow: Disabled **D8000-DBFFF Shadow: Disabled** DC000-DFFFF Shadow: Disabled

3.6.16 Small Logo (EPA) Show

The choices: Enabled, Disabled

3.7 Advanced Chipset Features

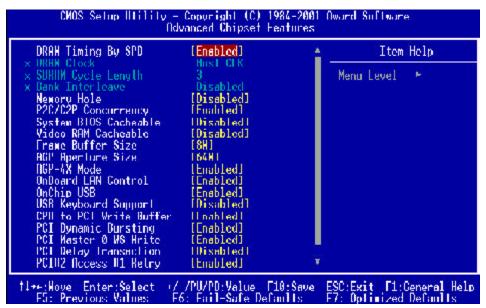


Figure 3.4 Advanced Chipset Features

3.7.1 DRAM Timing By SPD

This item allows you to select the value in this field, depending on whether the board has paged DRAMs or EDO (extended data output) DRAMs.

The choices: Enabled(Default), Disabled.

3.7.2 DRAM Clock

This item allows you to control the DRAM speed.

The choice: Host Clock, HCLK-33M, HCLK+33M

3.7.3 SDRAM Cycle Length

This field sets the CAS latency timing.

The choices: 3, 2

3.7.4 Bank Interleave

The choices: 2 Bank, 4 Bank, Disabled.

3.7.5 Memory Hole

In order to improve performance, certain space in memory is reserved for ISA cards. This memory must be mapped into the memory.

The choices: 15M-16 M, Disabled(Default)

3.7.6 P2C/C2P Concurrency

This item allows yo to enable/disable the PCI to CPU, CPU to PCI concurrency.

The choices: Enabled(Default), Disabled

3.7.7 **System BIOS Cacheable**

Selecting Enabled allows caching of the system BIOS ROM at F0000h-FFFFFh, resulting in better system performance. However, if any program writes to this memory area, a system error may result.

The choices: Enabled, Disabled(Default)

3.7.8 Video RAM Cacheable

The choices: Enabled, Disabled(Default)

3.7.9 Frame Buffer Size

The choices: 2M, 4M, 8M(Default), 16M, 32M.

3.7.10 AGP Aperture Size

Select the size of Accelerated Graphics Port (AGP) aperture.

The aperture is a portion of the PCI memory address range dedicated for graphics memory address space. Host cycles that hit the aperture range are forwarded to the AGP without any translation.

The choices: 4M, 8M, 16M, 32M, 64M(Default), 128M.

3.7.11 AGP-4X Mode

Enable 4X mode will enhance your system performance.

The choices: Enabled(Default), Disabled.

3.7.12 OnBoard LAN Control

The choices: Enabled(Default), Disabled.

3.7.13 OnChip USB

Select enabled if you wish to use onboard USB feature.

The choices: Enabled(Default), Disabled.

3.7.14 USB Keyboard Support

Select enabled if you wish to connect a USB keyboard.

The choices: Enabled, Disabled(Default)

3.7.15 CPU to PCI Write Buffer

When this field is enabled, writes from the CPU to the PCI bus are buffered, to compensate for the speed differences between the CPU and PCI bus. When, disabled, the writes are not buffered and the CPU must wait until the write is complete before starting another write cycle.

The choices: Enabled(Default), Disabled.

3.7.16 PCI Dynamic Bursting

When enabled, every write transaction goes to the write buffer. Burstable transactions then burst on the PCI bus and nonburstable transactions do not.

The choices: Enabled(Default), Disabled.

3.7.17 PCI Master 0 WS Write

When enabled, writes to the PCI bus are executed with zero wait

The choices: Enabled(Default), Disabled.

3.7.18 PCI Delay Transaction

The chipset has an embedded 32 -bit posted write buffer to support delay transactions cycles. Select enabled to support compliance with PCI specification version 2.1.

The choices: Enabled, Disabled(Default)

3.7.19 PCI #2 Access #1 Retry

When disabled, PCI#2 will be connected until access finishes (default). When enabled, PCI#2 will be disconnected if max retries are attempted without success.

The choices: Enabled(Default), Disabled.

3.7.20 AGP Master 1 WS Write

System will run single wait state delay before write data from buffer, if user set to disable system will run twice wait states so system can stable.

The choices: Enabled, Disabled(Default)

3.7.21 AGP Master 1 WS Read

System will run single wait state delay before read data from buffer, if user set to disable system will run twice wait states so system can stable.

The choices: Enabled, Disabled(Default)

3.8 **Integrated Peripherals**

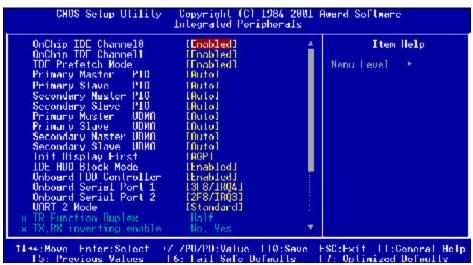


Figure: 3.5 Integrated Peripherals

3.8.1 On-Chip IDE Channel 0

The system chipset contains a PCI IDE interface with support for two IDE channels. Select Enabled to activate the primary and/or secondary IDE interface.

Select Disabled to deactivate this interface, if you install a primary and/or secondary add-in IDE interface.

The choices: Enabled(Default), Disabled.

3.8.2 On-Chip IDE Channel 1

The chipset contains a PCI IDE interface with support for two IDE channels. Select Enabled to activate the secondary IDE interface. Select Disabled to deactivate this interface.

The choices: Enabled(Default), Disabled.

3.8.3 IDE Prefetch Mode

The onboard IDE drive interfaces supports IDE prefetching, for faster drive accesses. If you install a primary and or secondary add in IDE interface, set this field to Disabled if the interface does not support prefetching.

The choices: Enabled(Default), Disabled.

3.8.4 Primary/Secondary Master/Slave PIO

The four IDE PIO (Programmable Input/Output) fields let you set a PIO mode (0-1) for each of the four IDE devices that the onboard IDE interface supports. Modes 0 through 4 provide successively increased performance. In Auto mode, the system automatically determines the best mode for each device.

The choices: Auto(Default), Mode 0, Mode 1, Mode 2, Mode 3, Mode 4.

3.8.5 Primary/Secondary Master/Slave UDMA

Ultra DMA 66/100 implementation is possible only if your IDE hard drive supports it and the operating environment includes a DMA driver (Windows 95 OSR2 or a third-party IDE bus master driver). If your hard drive and your IDE Cable both support Ultra DMA 33/66 **select Auto** to enable BIOS support.

The choices: Auto(Default), Disable

3.8.6 Init Display First

This item allows you to activate PCI or onboard VGA device first.

The choices: PCI Slot, AGP(Default)

3.8.7 IDE HDD Block Mode

Select Enabled only if your hard drives support block mode.

The choices: Enabled(Default), Disabled

3.8.8 Onboard FDD Controller

This item allows you to enable/disable onboard floppy disk controller.

The choices: Enabled(Default), Disabled

3.8.9 Onboard Serial Port 1

Normally, the main board I/O chips will occupy a certain portion of memory space. For each I/O device the computer provides an I/O address. The more devices attached the more address needed to organize the memory storage areas. If all the I/O devices were run through the same address, your devices would come to a near halt. By providing the end user with four serial ports this allows devices to run more efficiently if needed. Also the corresponding interrupt needs to be selected.

The choices: 3F8/IRQ4(Default), 3E8/IRQ4, 2F8/IRQ3, 2E8/ IRQ3, Disabled

3.8.10 Onboard Serial Port 2

The choices: 3F8/IRQ4, 3E8/IRQ4, 2F8/IRQ3(Default), 2E8/ IRQ3, Disabled

3.8.11 UART 2 Mode

The choices: Standard(Default), HPSIR, ASKIR

HPSIR IrDA-compliant serial infrared port ASK IR Amplitude shift keyed infrared port

3.8.12 IR Function Duplex

Select the value required by the IR device connected to the IR port. Full duplex mode permits simultaneous two direction transmission. Half duplex mode permits transmission in one direction only at a time.

The choices: Half, Full

3.8.13 TX, RX inverting enable

Consult your IR peripheral documentation to select the correct setting.

The choices: Yes, No; Yes, Yes; No, No; No, Yes

3.8.14 Onboard Parallel Port

Select a logical LPT port address and corresponding interrupt for the physical parallel port

The Choice: 378/IRQ7, 278/IRQ5, 3BC/IRQ7(Default),

Disabled

3.8.15 Onboard Parallel Mode

Two bidirectional parallel ports.

The choices: Normal(Default), EPP, ECP, ECP/EPP.

3.8.16 ECP Mode Use DMA

Select a DMA channel for the port.

The choices: 3(Default), 1

3.8.17 Parallel Port EPP Type

Select EPP port type 1.7 or 1.9.

The choices: EPP1.9(Default), EPP1.7

3.8.18 Onboard Serial Port 3

The choices: Disabled(Default), 3F8, 2F8, 3E8, 2E8

3.8.19 Serial Port 3 Use IRQ

The choices: IRQ10, IRQ11, IRQ4, IRQ3

3.8.20 Onboard Serial Port 4

The choices: Disabled(Default), 3F8, 2F8, 3E8, 2E8

3.8.21 Serial Port 4 Use IRQ

The choices: IRQ10, IRQ11, IRQ4, IRQ3

3.9 **Power Management Setup**

Figure 3.6 Power Management Setup

3.9.1 Power-Supply Type

There are two power supply type to choose from AT to ATX.

The choices: AT(Defult), ATX

3.9.2 ACPI function

The choices: Disabled, Enabled

3.9.3 Power Management(for ATX)

This category allows you to select the type (or degree) of power saving and is directly related to the following modes:

1. HDD Power Down

The choices: 1-15 mins, Disable

2. Doze Mode

The choices: 1min, 2min, 4min, 6min, 8min, 10min, 20min, 30min, 40min, 1hr, Disable

3. Suspend Mode

The choices: 1min, 2min, 4min, 6min, 8min, 10min, 20min, 30min, 40min, 1hr, Disable

SETUP TIPS

Maximum Saving

- 1. HDD 1~15 minutes or Disable
- 2. Doze Mode 1 Minute
- 3. Suspend Mode 1 Minute

Minimum Saving

- 1. HDD 1~15 minutes or Disable
- 2. Doze Mode 1 Hour
- 3. Suspend Mode 1 Hour

User Define

- 1. HDD 1~15 minutes or Disable
- 2. Doze Mode 1 min, 2 min, 4 min, 6 min, 8 min, 10 min, 20 min, 30 min, 40 min, 1 hour.
- 3. Suspend Mode 1 min, 2 min, 4 min, 6 min, 8 min, 10 min, 20 min, 30 min, 40 min, 1 hour.

3.9.4 PM Control by APM

If advanced power management is installed on your system, selecting Yes gives better power savings.

The choices: Yes(Default), No

3.9.5 Video Off Option

Select the power saving modes during which the monitor goes blank.

The Choices:

Monitor remains on during power saving Always on

modes.

Suspend--Off Monitor blanked when system enters

(Default) suspension mode.

All Modes--Off Monitor blanked when system enters

any power saving mode.

3.9.6 Video Off Method

This determines the manner in which the monitor is blanked.

The Choices:

V/H SYNC + Blank(Default)

This Selection will cause the system to turn off the vertical and horizontal synchronization ports and write blanks to the video buffer

Blanck Screen

This option only writes blanks to the video buffer

DPMS

Initial display power management signaling

3.9.7 MODEM Use IRQ

The Choices: 3 (Default), 4, 5, 7, 9, 10, 11, NA

3.9.8 Soft-Off by PWRBTN

The Choices: Instant-Off(Default), Delay 4 Sec

3.9.9 Wake Up Events (for ATX)

Sub-Menu:

* VGA:

The choices: OFF(Default), On

* LPT & COM:

The Choices LPT/COM(Default), NONE, LPT, COM

* HDD & FDD:

The Choices: ON(Default), OFF

* Modem Ring Resume:

The Choices: Disabled(Default), Enabled

* RTC Alarm Resume:

Set to 'On' to wake the system up from suspend mode as defined in Resume Time

The Choices: Disabled(Default), Enabled

* Date (of Month):

Specify date when the system should wake up from Suspend mode.

The Choices: 0-31

* Resume Time (hh:mm:ss)

Press <TAB> to enter the next field.

The Choices: 24hr:60mins:60secs

* Primary INTR:

The Choices: ON(Default), OFF

3.9.10 IRQS Activity Monitoring

Sub-Menu:

IRQ3 (COM2)/IRQ4(COM1)/IRQ5(LPT2)/ IRQ6(Floppy Disk)/IRQ7(LPT1): Enabled

IRQ8(RTC Alarm)/IRQ9(IRQ2 Redir)/ IRQ10(Reserved)/IRQ11(Reserved): Disabled

IRQ12(PS/2 Mouse)/IRQ13(Coprocessor)/

IRQ14(Hard Disk): Enabled

IRQ15(Reserved): Disabled

3.10 PnP/PCI Configurations

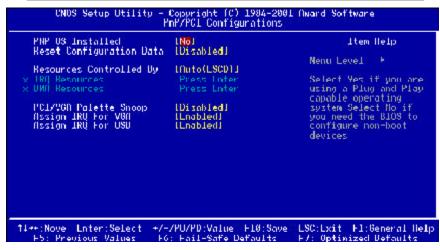


Figure 3.10 PnP/PCI Configurations

3.10.1 PNP OS Installed

Select Yes if you are using a plug and play capable operating system. Select No if you need the BIOS to configure non-boot devices.

The choices: No, Yes.

3.10.2 Reset Configuration Data

Default is Disabled. Select Enabled to reset Extended System Configuration Data (ESCD) when you exit Setup if you have installed a new add-on and the system reconfiguration has caused such a serious conflict that the OS cannot boot.

The choices: Enabled, Disabled

3.10.3 Resources Controlled By

BIOS can automatically configure all the boot and Plug and Play compatible devices. If you choose Auto, you cannot select IRQ DMA and memory base address fields, since BIOS automatically assigns them.

The choices: Auto (ESCD) (Default), Manual.

3.10.4 IRQ Resources

When resources are controlled manually, assign each system interrupt a type, depending on the type of device using the interrupt.

Sub-Menu:

Legacy ISA for devices compliant with the original PC AT bus specification, PCI/ISA PnP for devices compliant with the Plug and Play standard whether designed for PCI or ISA bus architecture.

IRQ-3/IRQ-4/IRQ-5/IRQ-7/IRQ-9/IRQ-10/IRQ-11/IRQ-12/IRQ-14/ IRQ-15 assigned to The choices: PCI/ISA PnP, Legacy ISA

3.10.5 DMA Resources

When resources are controlled manually, assign each DMA channel a type, depending on the type of device using the DMA channnel.

Sub-Menu:

Legacy ISA for devices compliant with the original PC AT bus specification, PCI/ISA PnP for devices compliant with the Plug and Play standard whether designed for PCI or ISA bus architecture.

DMA-0/DMA-1/DMA-3/DMA-5/DMA-6/DMA-7 assigned to:

The choices: PCI/ISA PnP, Legacy ISA

3.10.6 PCI/VGA Palette Snoop

Leave this field at Disabled.

The choices: Enabled, Disabled(Default)

3.10.7 Assign IRQ for VGA

The choices: Enabled(Default), Disabled.

3.10.8 Assign IRQ for USB

The choices: Enabled(Default), Disabled

3.11 PC Health Status

CNOS Setup Utility - Copyright [C] 1904-2001 Amard Software PC Health Status			
Current CPU Lemp. Current CPUFAN Speed Voore 2.5V 3.3V 5V .12V	32°C/87°F 35°C/95°F 2.01 V 2.54 V 3.26 V 4.98 V 12.00 V	Item Help Menu Level ►	

Figure 3.11 PC Health Status

3.11.1 PC Health Status

Your system does not allow you to alter any of the setting in this menu. The system engineer has already designated the correct setting for SBC-657.

3.12 Frequency/Voltage Control

Figure 3.12 Frequency/Voltage Control

3.12.1 Auto Detect DIMM/PCI CLK

This item allows you to enable/disable auto detect DIMM/PCI clock.

The choices: Enabled(Default), Disabled

3.12.2 Spread Spectrum Modulated

This allows you to enable/disable the spread spectrum modulate. When the system clock generator pulses, the extreme values of the pulse generate excess EMI. Enabling pulse spectrum spread modulation changes the extreme pulse spikes to flat curves thus reducing EMI.

The choices: . 25%, . 50%, Disabled(Default)

3.13 Load Fail-Safe Defaults

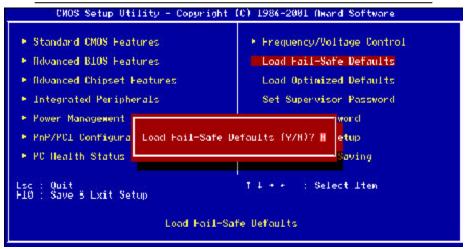


Figure 3.13 Load Fail-Safe Defaults

3.13.1 Load Fail-Safe Defaults

When you press <Enter> on this item you get a confirmation dialog box with a message similar to:

Load Fail-Safe Default (Y/N)?

Pressing "Y" loads the BIOS default values for the most stable, minimal performance system operations.

3.14 Load Optimized Default

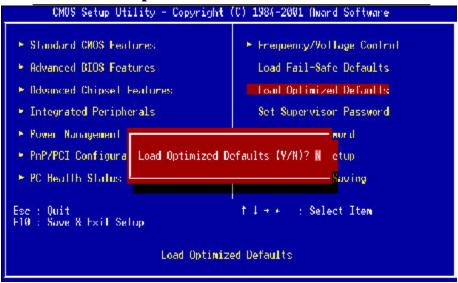


Figure 3.14 Load Optimized Default

3.14.1 Load Optimized Default

When you press <Enter> on this item you get a confirmation dialog box with a message similar to:

Load Optimized Defaults (Y/N)?

Pressing "Y" loads the default values that are factory settings for optimal performance system operations.

3.15 Set Supervisor Password

Figure 3.15 Set Supervisor Password

When you select this function, a message appears at the center of the screen:

ENTER PASSWORD:

Type the password, up to eight characters, and press Enter.

Now the message changes:

CONFIRM PASSWORD:

Again, type the password and press Enter.

To abort the process at any time, press Esc.

In the Security Option item in the BIOS Features Setup screen, select System or Setup:

System Enter a password each time the system boots and whenever you enter Setup.

Setup Enter a password when ever you enter Setup.

NOTE: To clear the password, simply press Enter when asked to enter a password. Then the password function is disabled.

3.16 Set User Password

Figure 3.16 Set User Password

When you select this function, a message appears at the center of the screen:

ENTER PASSWORD:

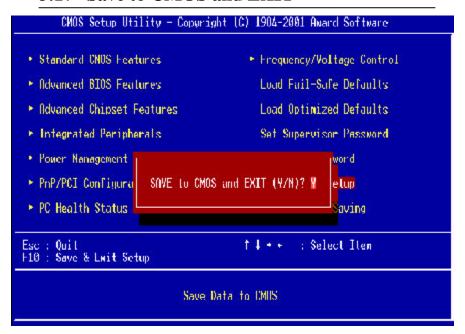
Type the password, up to eight characters, and press Enter. Typing a password clears any previously entered password from CMOS memory.

Now the message changes:

CONFIRM PASSWORD:

Again, type the password and press Enter.

To abort the process at any time, press Esc.


In the Security Option item in the BIOS Features Setup screen, select System or Setup:

System Enter a password each time the system boots and whenever you enter Setup.

Setup Enter a password whenever you enter Setup.

NOTE: To clear the password, simply press Enter when asked to enter a password. Then the password function is disabled.

3.17 Save to CMOS and EXIT

3.17.1 Save to CMOS and EXIT

Pressing <Enter> on this item asks for confirmation:

Save to CMOS and Exit (Y/N)?

Pressing "Y" stores the selections made in the menus in CMOS, a special section of memory that stays on after you turn your system off. The next time you boot your computer, the BIOS configures your system according to the Setup selections stored in CMOS. After saving the values the system is restarted again.

Driver Installation

This SBC-657 is equipped with an Audio, VGA and Dual LAN interfaces. This chapter provides instructions for installing the software drivers on these peripherals.

4.1 **Drivers Installation 1**

The SBC-657 comes with a CD which contains most of the drivers and utilities for your needs. There are several installation ways depending on the driver package under different Operating System application. We recommend that the system driver installation procedure be performed first.

If you utilize Windows NT series OS, you are strongly recommended to download the latest version Windows NT Service Pack from Microsoft website and install it before installing any driver.

Installation:

Applicable for Windows 9x/ME/2000/XP/NT 4.0

- 1. Insert the **SBC-657 CD** into the CD ROM Drive.
- 2. From the CD ROM, select the desired component **Driver** folder, select the desired Operation System folder to double click on the **Setup.exe** icon. A driver installation screen will appear.

(Notice:take VGA driver installation under Windows 98 for example, choose the corresponding folder depending on your OS)

3. A driver installation screen will appear, please follow the onscreen instructions to install the driver in sequence.and click on the Next button.

(Notice: In some cases the system will ask you to insert Windows 98 CD and key in its path. Then click on the **OK** button to key in path.)

4. Click on the **Finish** button to finish installation process. And allows the system to reboot.

4.2 **Drivers Installation 2**

Installation

Applicable for Windows 9x/ME/2000

- 1. Insert the **SBC-657 CD** into the CD ROM Drive.
- 2. Click on **Start** button, select the **Settings**, then click on the Control Panelicon.
- 3. Double click on the Add/Remove Hardware icon and Add New Hardware Wizard will appear. Click on the Next button.
- 4. Select Search for the best driver for your device (Recommended) and click on the Next button.
- 5. Select **Specify a location**, click on **Have Disk** button then key in the CD-ROM path and specify component drivers and OS folders. Then click on the **Next** button.
- 6. The Wizard shows that Windows driver file search for the device: (For example, Ethernet decvices, the list appear Realtek RTL8139/ 810X Family PCI Fast Ethernet NIC).

Click on the Next button.

- 7. The system will ask you to insert Windows 98 CD. Click on the **OK** button to insert CD and key in path.
- 8. Click on the **OK** button.
- 9. Click on the **Finish** button to finish installation process. And allows the system to reboot.

4.3 **Drivers Installation 3**

Installation:

Applicable for Windows NT 4.0

- 1. Insert the **SBC-657 CD** into the CD ROM Drive.
- 2. Start system with Windows NT 4.0 installed.

IMPORTANT: When the "Please select the operating system to start..." message is displayed, select "Windows NT Workstation Version 4.00 [VGA mode]".

3. From **Start**, select the **Settings group**, then click on the

Control Panelicon.

- 4. In the **Control Panel**, select the desired device and click on the icon.
- 5. Follow the step-by-step instruction and click on **OK** button.
- 6. Click on the **Have Disk...** button.
- 7. Key in CD-ROM path and specify component drivers, then click on the **OK** button.
- 8. From the list of displayed devices, select your desired device.
- 9. If a message appears stating the driver is already installed on the system, and asks if you want to use the current or new drivers, be sure to select the New button.
- 12. If prompted for the driver disk a second time, click on the Continue button.

(Notice: In some cases the system will ask you to insert Windows *NT CD. Follow its instructions to complete the setup procedures.*)

- 13. When the message **The drivers were successfully installed** is displayed, remove the display driver disk, then click on the **OK** button.
- 14. Reboot the system.

APPENDIX

Programming the Watchdog Timer

SBC-657 is equipped with a watchdog timer that resets the CPU or generates an interrupt if processing comes to a standstill for whatever reason. This feature ensures system reliability in industrial stand-alone and unmanned environments.

Programming the watchdog timer

An on-board watchdog timer reduces the chance of disruptions which CPLD (compact programmable logical device) interference can cause. This is a valuable protective device for standalone or unmanned applications. When the watchdog timer activates(CPU processing has come to a halt), it can reset the system, or generate an interrupt on IRQ10, IRQ11, IRQ15, and NMI. This can be set via I/O Port 444, the functions as following:

0: RESET 1: NMI 2: IRQ10 3: IRQ11 4: IRQ15

If you decide to program the watchdog timer, you must write data to I/O port 443 (hex). The output data is a value timer. You can write from 00 (hex) to FF (hex) for input second data, and the related timer is 10 seconds to 255 seconds.

After data entry, your program must refresh the watchdog timer by rewriting the I/O port 443 (hex) while simultaneously setting it. When you want to disable the watchdog timer, your program should write I/O port 80 (hex) a Hex value.

The following procedure is a sample program for the watchdog timer:

- Type C:\DOS\Debug <ENTER>
- To start watchdog timer and set function "Reset" type; o 444 0 <Enter>; out 444h data 0
- To input Watchdog timers time-out interval of 5 seconds type; o 443 05 <Enter>; out 443h data 05
- To disable the watchdog timer type; i 80 < Enter >

The time interval data of the watchdog timer is shown in binary code (8 bits).

Sample 2 : 5 seconds 0 0 0 0 0 1 0 1