PCM-6897/L Socket 370 based Tualatin/ Pentium® III / Celeron® Comopact Board W/LCD, Ethernet, Audio, & CFD PCM-6897/L Rev. A Manual Oct. 2003 #### **Copyright Notice** This document is copyrighted, 2003. All rights are reserved. The original manufacturer reserves the right to make improvements to the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated, or transmitted in any form or by any means without the prior written permission of the original manufacturer. Information provided in this manual is intended to be accurate and reliable. However, the original manufacturer assumes no responsibility for its use, or for any infringements upon the rights of third parties which may result from its use. The material in this document is for product information only and is subject to change without notice. While reasonable efforts have been made in the preparation of this document to assure its accuracy, AAEON, assumes no liabilities resulting from errors or omissions in this document, or from the use of the information contained herein. AAEON reserves the right to make changes in the product design without notice to its users. #### Acknowledgments All other product names or trademarks are properties of their respective owners. Award is a trademark of Award Software International, Inc. $CompactFlash^{\text{\tiny{TM}}} \ \ is a \ trademark \ of the \ Compact \ Flash \ Association.$ IBM, PC/AT, PS/2, and VGA are trademarks of International Business Machines Corporation. Intel and Pentium III are trademarks of Intel Corporation. ITE is a trademark of Integrated Technology Express, Inc. Microsoft Windows® is a registered trademark of Microsoft Corp. SMI is a trademark of Silicon Motion. Inc. SoundBlaster is a trademark of Creative Labs, Inc. #### **Packing List** Before you begin installing your card, please make sure that the following materials have been packed: - 1 PCM-6897/L Compact board - 1 Quick Installation Guide - 1 CD-ROM for manual (in PDF format) and drivers - 1 TV-out cable (for PCM-6897) - Jumper kit - Short copper and support The PCM-6897/L requires several cables for operation. You can make them yourself or purchase an optional cable kit, PCM-10689-1. If any of these items should be missing or damaged, contact your distributor or sales representative immediately. #### **Contents** #### **Chapter 1 General Information** | | 1.1 Introduction | 1-2 | |----|------------------------------------------|-------| | | 1.2 Features | 1-4 | | | 1.3 Specifications | 1-5 | | Ch | apter 2 Quick Installation Guide | | | | 2.1 Safety Precautions | 2-2 | | | 2.2 Location of Connectors and Jumpers | .2-3 | | | 2.3 Mechanical Drawing | 2-5 | | | 2.4 List of Jumpers | 2-7 | | | 2.5 List of Connectors | 2-8 | | | 2.6 Setting Jumpers | 2-9 | | | 2.7 Audio Out Selection (JP1) | 2-10 | | | 2.8 PCI-104 I/O Voltage Selection (JP2) | 2-10 | | | 2.9 COM2 RS232/422/485 Selection (JP3/5) | 2-10 | | | 2.10 COM2 Ring/+5V/+12V Selection (JP4) | 2-11 | | | 2.11 Clear CMOS (JP6) | 2-11 | | | 2.12 LCD Voltage Selection (JP7) | 2-11 | | | 2.13 TTL-LCD Clock Selection (JP8) | 2-12 | | | 2.14 ATX Power Connector (CN1) | 2-12 | | | 2.15 AT Power Connector (CN2) | 2-12 | | | 2.16 Audio Connector (CN3) | .2-13 | | | 2.17 Floppy Connector (CN4) | .2-13 | | | 2 18 LAN LED Connector (CN5) | 2-15 | #### **Compact Board** | | 2.19 LPT Port Connector (CN6) | 2-15 | |-----|----------------------------------------------|------| | | 2.20 IrDA Connector (CN7) | 2-16 | | | 2.21 USB Connectors (CN8/CN9) | 2-17 | | | 2.22 GPIO Connector (CN10) | 2-18 | | | 2.23 Serial Port Connector (CN11) | 2-18 | | | 2.24 Optional PME Connector (CN12) | 2-19 | | | 2.25 PS2 Keyboard/Mouse Connector (CN13) | 2-19 | | | 2.26 VGA Display Connector (CN14) | 2-20 | | | 2.27 TTL_LCD Connector (CN15) | 2-20 | | | 2.28 LVDS Connector (CN17) | 2-21 | | | 2.29 TV_Out Connector (CN18) | 2-21 | | | 2.30 Fan Connectors (CN19/20) | 2-22 | | | 2.31 Front Panel Connector (CN21) | 2-22 | | | 2.32 EIDE Connector (IDE1) | 2-22 | | | 2.33 10/100Base-Tx Ethernet Connector (LAN1) | 2-24 | | | | | | Cha | apter 3 Award BIOS Setup | | | | 3.1 System Test and Initialization | 3-2 | | | 3.2 Award BIOS Setup | 3-3 | | | 3.3 Standard CMOS Features | 3-6 | | | 3.4 Advanced BIOS Features | 3-7 | | | 3.5 Advanced Chipset Features | 3-8 | | | 3.6 Integrated peripherals | 3-9 | | | 3.7 Power Management Setup | 3-10 | | | 3.8 PnP/PCI Configurations | 3-11 | #### **Compact Board** #### PCM-6897/L | | 3.9 PC Health Status | 3-12 | |----|-------------------------------------------|------| | | 3.10 Frequency/Voltage Control | 3-13 | | | 3.11 Load Fail-safe Defaults | 3-14 | | | 3.12 Load Optimized Defaults | 3-14 | | | 3.13 Set Supervisor/User Password | 3-14 | | | 3.14 Save and Exit Setup | 3-15 | | | 3.15 Exit without saving | 3-15 | | Ch | apter 4 Driver Installation | | | | 4.1 Installation 1 | 4-2 | | | 4.2 Installation 2 | 4-3 | | | 4.3 Installation 3 | 4-4 | | Ap | pendix A Programming the Watchdog Timer | | | | A.1 Watchdog timer of PCM-6897/L | A-2 | | | A.2 Configuring Sequenæ Description | A-2 | | | A.3 IT8712 initial watchdog timer program | A-5 | | Ap | pendix B Optional Extras | | | | B.1 PCM-10689-1 Wiring Kit | B-2 | Chapter General Information #### 1.1 Introduction AAEON new compact size board PCM-6897/L targets high-end multimedia and networking applications. Easy Upgrading allows you to take full advantage of Intel® Development of even-higher speed Tualatin, Pentium® III and Celeron® processors. This is a perfect choice for embedded applications that require cost-effective, high computing performance features. PCM-6897 and PCM-6897L differs in the display support to fit your different system requirement. For VGA or non-display application, PCM-6897L would be a more cost-effective solution. However, targeting to serve high-end multimedia markets, PCM-6897 is equipped with SMI 722 graphic controller to offer you excellent visual performance. PCM-6897/L features power management to minimize power consumption. It complies with the ACPI standard and supports power-saving features which is Suspend modes. The board watchdog timer automatically resets the system or generates an interrupt in case the system stops due to a program bug or EMI. The onboard Compact Flash will offer a larger memory bank for data storage of all types. CompactFlash requires a fraction of power used to drive floppy disk or CD-ROMs, also no battery is required to save the data when the computer powers down. The onboard 10/100BaseTx Ethernet interface and Sound Blaster-compatible audio opens up worlds of possibilities for kiosks, gaming systems, POS systems, medical and educational products. The Fast Ethernet controller provides a tenfold increase in Network capability, and is fully compatible with traditional 10Mbps network facilities. PCM-6897/L also includes four high-speed serial ports (three RS-232, one RS-232/422/485), one multimode (ECP/EPP/SPP) parallel port, 2 floppy drives, four USB ports, an Ultra DMA/100 enhanced IDE controller supporting up to two devices with data transfer rate up to 100MB per second, and a keyboard/PS/2 mouse interface. This AAEON embedded PC includes almost everything you need for fast, worry-free embedded PC performance. The addition of PCI-104 connector allows a wide selection of accessory cards to be added to the PCM-6897/L. Such accessories as Ultra Wide 2 SCSI, fax modem, vehicle power supply, extra DiskOnChip, PCMCIA module, etc. #### 1.2 Features - Supports socket 370 based Intel® Tualatin, Pentium® III, and Celeron® processors - High Speed AGP 2X for VGA display - On board SM 722 Controller supports up to 24-bit TTL/LVDS TFT/DSTN panels (for PCM-6897) - One 10/100Base-T Fast Ethernet - Supports H/W status monitoring - Integrated AC-97 2.1 SoundBlaster compatible 3D Audio - Supports CompactFlash memory storage - Four USB Ports - Digital I/O #### 1.3 Specifications #### **System** • CPU: Socket 370 based Intel[®] Tualatin[®] (.13 µ)/Pentium® III(.18 μ)/Celeron[®] (.18 μ) Processor up to 1.4GHz Memory: SDRAM DIMM Socket x 1, Max 512MB (PC-100/133 supported) • Chipset: Intel 815E + ICH2 • BIOS: Award 2 Mb FLASH BIOS • Audio: ALC201 Codec AC97, Mic in, Line in, Line out, CD Audio in, Speaker out SSD: One Type II CompactFlash Card • Watchdog timer: Can generate a system reset • DMA: 7 DMA channels (8237 equivalent) • Interrupt: 15 interrupt levels (8259 equivalent) • Ethernet: Intel 815E, 10/100MB Fast Ethernet Chip, RJ45 connector x 1 • Expansion Interface: PCI-104 x 1, PCI slot x 1 H/W status monitoring:Power supply voltages and temperatures monitoring functions are built into ITE 8712 chip • Battery: Lithium battery for data retention, DIP Type. • Power supply voltage: +3.3V, ±5V, ±12V, ATX or AT power supply • Operating temperature: 32 to 140 F (0 to 60 €) • Board size/Weight: 8" (L) x 5.75" (W) (203 mm x 146 mm); 1.2lb(0.5Kg) #### **Display** #### PCM-6897 • Chipset SMI 722 • Memory size: 4MB integrated • Resolution: Up to 1600 X 1200 colors for CRT; Up to 1024 X 768 for TFT &DSTN • LCD Interface: Up to 24-bit TTL/DSTN LCD • TV out Support NTSC/PAL standard #### PCM-6897L • Chipset Intel 815E, AGP 2X, 133MHz • Memory size: UMA up to 4MB • Resolution: Up to 1600 X 1200@24bit colors • LCD Interface: None #### I/O • MIO: EIDE (Ultra DMA100) x 1, FDD x 1, RS-232/422/485 x 1, RS-232 x 3, LPT x 1, Keyboard/Mouse | Compact Board | PCM-6897/L | |----------------------------------------------|----------------------------------------------------------------------------| | • Digital I/O: | Connector x 1, Support 4 general purpose I/O each with TTL level interface | | IR interface:USB: | One IrDA Tx/Rx header Two 5x2 pin headers support 4 USB | | | ports | # Chapter ### Quick Installation Guide #### Notice: The Quick Installation Guide is derived from Chapter 2 of user manual. For other chapters and further installation instructions, please refer to the user manual CD-ROM that came with the product. #### 2.1 Safety Precautions ## Warning! Always completely disconnect the power cord from your board whenever you are working on it. Do not make connections while the power is on, because a sudden rush of power can damage sensitive electronic components. #### Caution! Always ground yourself to remove any static charge before touching the board. Modern electronic devices are very sensitive to static electric charges. Use a grounding wrist strap at all times. Place all electronic components on a static-dissipative surface or in a static-shielded bag when they are not in the chassis #### 2.2 Location of Connectors and Jumpers #### Locating connectors and jumpers (component side) #### Locating connector (solder side) #### 2.3 Mechanical Drawing #### Mechanical drawing (component side) #### **Mechanical Drawing (solder side)** #### 2.4 List of Jumpers The board has a number of jumpers that allow you to configure your system to suit your application. The table below shows the function of each of the jumpers of the board: #### **Jumpers** | Label | Function | |-------|-------------------------------| | JP1 | Audio Out Selection | | JP2 | PCI-104 I/O Voltage Selection | | JP3 | COM2 RS-232/422/485 Selection | | JP4 | COM2 Ring/+5V/+12V Selection | | JP5 | COM2 RS-232/422/485 Selection | | JP6 | Clear CMOS | | JP7 | LCD Voltage Selection | | JP8 | TTL-LCD Clock Selection | #### 2.5 List of Connectors The board has a number of connectors that allow you to configure your system to suit your application. The table below shows the function of each of the connectors of the board: #### **Connectors** | Label | Function | |--------|------------------------------| | CN1 | ATX Power Connector * | | CN2 | AT Power Connector * | | CN3 | Audio Connector | | CN4 | Floppy Connector | | CN5 | LAN LED Connector | | CN6 | LPT Port Connector | | CN7 | IrDA Connector | | CN8 | USB1/2 Connector | | CN9 | USB3/4 Connector | | CN10 | GPIO Connector | | CN11 | Serial Port Connector | | CN12 | Optional PME Connector | | CN13 | PS2 Keyboard/Mouse Connector | | CN14 | VGA Display Connector | | CN15 | TTL_LCD Connector | | CN17 | LVDS Connector | | CN18 | TV_Out Connector | | CN19 | Fan1 Connector | | CN20 | Fan2 Connector | | CN21 | Front Panel Connector | | 104+_1 | PCI-104 Connector | | DIMM1 | DIMM Slot | | IDE1 | EIDE Connector | |------|-----------------------------------| | LAN1 | 10/100 Base-Tx Ethernet Connector | | PCI1 | PCI Slot | | CFD1 | CompactFlash Slot | \star AT and ATX power connectors occupy the same location on the board. You may select either ATX or AT type power connector to fit your application. #### 2.6 Setting Jumpers You configure your card to match the needs of your application by setting jumpers. A jumper is the simplest kind of electric switch. It consists of two metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To "close" a jumper you connect the pins with the clip. To "open" a jumper you remove the clip. Sometimes a jumper will have three pins, labeled 1, 2 and 3. In this case you would connect either pins 1 and 2 or 2 and 3. A pair of needle-nose pliers may be helpful when working with jumpers. If you have any doubt about the best hardware configuration for your application, contact your local distributor or sales representative before you make any change. Generally, you simply need a standard cable to make most connections. #### 2.7 Audio Out Selection (JP1) | JP1 | Function | |----------|-----------------------| | 1-3, 2-4 | W/O Amplifier | | 3-5, 4-6 | W/Amplifier (Default) | #### 2.8 PCI-104 I/O Voltage Selection (JP2) | JP2 | Function | | |-----|--------------|--| | 1-2 | 5 V(Default) | | | 2-3 | 3.3V | | #### 2.9 COM2 RS-232/422/485 Selection (JP3/JP5) The COM2 port can be selected as RS-232, RS-422 or RS-485 by setting both JP3 and JP5. The following chart shows the jumper setting. | JP3 | JP5 | Function | |-----|----------------------|------------------| | 1-2 | 1-2, 4-5, 7-8, 10-11 | RS-232 (Default) | | 3-4 | 2-3, 5-6, 8-9, 11-12 | RS-422 | | 5-6 | 2-3, 5-6, 8-9, 11-12 | RS-485 | #### 2.10 COM2 Ring/+5V/+12V Selection (JP4) | JP4 | Function | | |-----|---------------|--| | 1-2 | +12V | | | 3-4 | +5V | | | 5-6 | Ring(Default) | | #### 2.11 Clear CMOS (JP6) #### Warning: To avoid damaging the computer, always turn off the power supply before setting "Clear CMOS." Before turning on the power supply, set the jumper back to "Protected" | JP6 | Function | |-----|--------------------| | 1-2 | Protected(Default) | | 2-3 | Clear CMOS | #### 2.12 LCD Voltage Selection (JP7) You can select the LCD voltage situation by setting JP7. The following chart shows the available options. | JP7 | Function | | |-----|-----------------|--| | 1-2 | +3.3V (Default) | | | 2-3 | +5V | | #### 2.13 TTL-LCD Clock Selection (JP8) You can select the LCD clock situation by setting JP8. The following chart shows the available options. | JP8 | Function | | |-----|-----------------|--| | 1-2 | Clock (Default) | | | 2-3 | Reverse Clock | | #### 2.14 ATX Power Connector(CN1) | Pin | Signal | Pin | Signal | |-----|----------|-----|--------| | 1 | +3.3V | 11 | +3.3V | | 2 | +3.3V | 12 | -12V | | 3 | GND | 13 | GND | | 4 | +5V | 14 | PS_ON | | 5 | GND | 15 | GND | | 6 | +5V | 16 | GND | | 7 | GND | 17 | GND | | 8 | POWER OK | 18 | -5V | | 9 | +5VSB | 19 | +5V | | 10 | +12V | 20 | +5V | #### 2.15 AT Power Connector(CN2) | Pin | Signal | |-----|--------| | 1 | N.C | | 2 | +5V | | | Compact Board | PCM-6897/L | |----|---------------|------------| | | | | | 3 | +12V | | | 4 | -12V | | | 5 | GND | | | 6 | GND | | | 7 | GND | | | 8 | GND | | | 9 | -5V | | | 10 | +5V | | | 11 | +5V | | | 12 | +5V | | #### 2.16 Audio Connector(CN3) The PCM-6897/L provides all major audio signals on a 14-pin flat-cable connector, CN3. Attach the Mic In, Line In, and Audio Out to the corresponding pins as shown in the following table. | Pin | Signal | Pin | Signal | |-----|--------------|-----|--------------| | 1 | MIC_IN | 2 | MIC_+2.5V | | 3 | LINE_IN_GND | 4 | CD_GND | | 5 | LINE_IN_L | 6 | CD_IN_L | | 7 | LINE_IN_R | 8 | CD_GND | | 9 | LINE_IN_GND | 10 | CD_IN_R | | 11 | LINE_OUT_L | 12 | LINE_OUT_R | | 13 | LINE_OUT_GND | 14 | LINE_OUT_GND | #### 2.17 Floppy Connector(CN4) With support of different types of floppy, you can simply adopt any of the combinations of 5.25" (360 KB and 1.2 MB) and/or 3.5" (720 KB, 1.44 MB, and 2.88 MB) drives onto the mainboard. A 34-pin daisy-chain drive connector cable is required for a dual-drive system. On one end of the cable is a 34-pin flat-cable connector. On the other end are two sets of floppy disk drive connectors. Each set consists of a 34-pin flat-cable connector (usually used for 3.5" drives) and a printed-circuit board connector (usually used for 5.25" drives). Wire number 1 on the cable is normally red or blue, and the other wires are usually gray. #### **Connecting the floppy drive** - 1. Plug the 34-pin flat-cable connector into CN4. Make sure that the red or blue wire corresponds to pin 1 on the connector. - 2. Attach the appropriate connector on the other end of the cable to the floppy drive(s). You can use only one connector in the set. The set on the end (after the twist in the cable) connects to A: drive. The set in the middle connects to B: drive. - 3. If you are connecting a 5.25" floppy drive, line up the slot in the printed circuit board with the blocked-off part of the cable connector. If you are connecting a 3.5" floppy drive, you may have trouble determining which pin is pin number 1. Look for a number printed on the circuit board indicating pin number 1. Also, the connector on the floppy drive connector may have a slot. When the slot is up, pin number 1 should be on the right. Check the documentation that came with the drive for more information. | Pin | Signal | Pin | Signal | |-----|--------|-----|----------------| | 1 | GND | 2 | REDWC | | 3 | GND | 4 | N.C. | | 5 | GND | 6 | DS1 | | 7 | GND | 8 | INDEX | | 9 | GND | 10 | MOTOR A | | 11 | GND | 12 | DRIVE SELECT B | | 13 | GND | 14 | DRIVE SELECT A | | 15 | GND | 16 | MOTOR B | | | Compact Board | | PCM-6897/L | |----|---------------|----|---------------| | | | | | | 17 | GND | 18 | DIR | | 19 | GND | 20 | STEP | | 21 | GND | 22 | WRITE DATA | | 23 | GND | 24 | WRITE GATE | | 25 | GND | 26 | TRACK0 | | 27 | GND | 28 | WRITE PROTECT | | 29 | GND | 30 | READ DATA | | 31 | GND | 32 | SIDE1 | | 33 | GND | 34 | DISK CHANGE | #### 2.18 LAN LED Connector(CN5) The PCM-6897/L supports three sets of LED connector for external LED indicators. #### **Ethernet active signal LED** Flashing Tx or Rx LEDs indicate that the PCM-6897/L is transmitting or receiving data. #### **Ethernet link signal LED** A continuously lit LED indicates good linkage between the PCM-6897/L and its supporting hub. #### **Ethernet speed signal LED** Flashing LED indicates the transfer speed (10Base-T or 100Base-Tx) of the network. | Pin | Signal | Pin | Signal | |-----|--------|-----|------------| | 1 | +3.3V | 2 | Active LED | | 3 | +3.3V | 4 | Link LED | | 5 | +3.3V | 6 | Speed LED | #### 2.19 LPT Port Connector(CN6) Normally, the parallel port is used to connect the board to a printer. The PCM-6897/L includes a multi-mode (ECP/EPP/SPP) parallel port. It is accessed via CN6 with a 26-pin flat-cable connector. You will need an adapter cable if you use a traditional DB-25 connector. The adopter cable should have a 26-pin connector on one end and a DB-25 connector on the other end. | Pin | Signal | Pin | Signal | |-----|--------|-----|--------| | 1 | STROBE | 2 | AFD | | 3 | PTD0 | 4 | ERROR | | 5 | PTD1 | 6 | INIT | | 7 | PTD2 | 8 | SLIN | | 9 | PTD3 | 10 | GND | | 11 | PTD4 | 12 | GND | | 13 | PTD5 | 14 | GND | | 15 | PTD6 | 16 | GND | | 17 | PTD7 | 18 | GND | | 19 | ACK | 20 | GND | | 21 | BUSY | 22 | GND | | 23 | PE | 24 | GND | | 25 | SELECT | 26 | NC | #### 2.20 IrDA Connector(CN7) The IrDA connector (CN7) can be configured to support wireless infrared module, with this module and application software such as laplink or Win95 Direct Cable connection, user can transfer files to or from laptops, notebooks, PDA and printers. Install infrared module onto IrDA connector and enable infrared function from BIOS setup. Make sure to have correct orientation when you plug onto IrDA connector CN7. | Pin Signal | |------------| |------------| | | Compact Board | PCM-6897/L | |---|---------------|------------| | | | | | 1 | +5V | | | 2 | CIRTX | | | 3 | IRRX | | | 4 | GND | | | 5 | IRTX | | | 6 | CIRTX | | #### 2.21 USB Connectors(CN8/CN9) The PCM-6897/L board provides four USB (Universal Serial Bus) interfaces supporting up to 4 USB ports. The USB interfaces comply with USB specification rev. 1.1 and are fuse protected. The USB interfaces are accessed through two 10-pin flat-cable connectors, CN8 & CN9. The adapter cable has a 10-pin connector on one end and two USB connectors on the bracket on the other end. #### **USB1 Connector (CN8)** | Pin | Signal | Pin | Signal | |-----|--------|-----|--------| | 1 | +5V | 2 | GND | | 3 | USBD1- | 4 | GND | | 5 | USBD1+ | 6 | USBD2+ | | 7 | GND | 8 | USBD2- | | 9 | GND | 10 | +5V | #### **USB2 Connector (CN9)** | Pin | Signal | Pin | Signal | |-----|--------|-----|--------| | 1 | +5V | 2 | GND | | 3 | USBD3- | 4 | GND | | 5 | USBD3+ | 6 | USBD4+ | | | Compact Board | | PCM-6897/L | |---|---------------|----|------------| | | | | | | 7 | GND | 8 | USBD4- | | 9 | GND | 10 | +5V | #### 2.22 GPIO Connector(CN10) PCM-6897/L offers 4-pair of digital I/O functions. With the input and output consisting of the following: Input 801H; GPI20 [bit0], GPI21[bit1], GPI22[bit2], GPI23[bit3] and Output 801H; GPO24[bit4], GPO25[bit5], GPO26[bit6], GPO27[bit7]. The pin definitions are illustrated below: | Pin | Signal | Pin | Signal | |-----|--------|-----|--------| | 1 | IN1 | 2 | IN2 | | 3 | IN3 | 4 | IN4 | | 5 | OUT1 | 6 | OUT2 | | 7 | OUT3 | 8 | OUT4 | | 9 | +5V | 10 | GND | #### 2.23 Serial Port Connector(CN11) | Pin | Signal | Pin | Signal | |-----|----------------------|-----|--------| | 1 | DCD1 | 2 | DSR1 | | 3 | RXD1 | 4 | RTS1 | | 5 | TXD1 | 6 | CTS1 | | 7 | DTR1 | 8 | RI1 | | 9 | GND | 10 | N.C | | 11 | DCD2(422TXD-/485DATA | 12 | DSR2 | | 13 | RXD2(422RXD+) | 14 | RTS2 | | 15 | TXD2(422TXD+/485DATA | 16 | CTS2 | | 17 | DTR2(422RXD-) | 18 | RI2 | | 19 | GND | 20 | N.C | | 21 | DCD3 | 22 | DSR3 | | | Compact Board | | PCM-6897/L | |----|---------------|----|------------| | | DVD | | DTO | | 23 | RXD3 | 24 | RTS3 | | 25 | TXD3 | 26 | CTS3 | | 27 | DTR3 | 28 | RI3 | | 29 | GND | 30 | N.C | | 31 | DCD4 | 32 | DSR4 | | 33 | RXD4 | 34 | RTS4 | | 35 | TXD4 | 36 | CTS4 | | 37 | DTR4 | 38 | RI4 | | 39 | GND | 40 | N.C | #### 2.24 Optional PME Connector(CN12) | Pin | Signal | |-----|----------| | 1 | +5VSB | | 2 | GND | | 3 | #PME | | 4 | SMB_DATA | | 5 | SMB_CLK | #### 2.25 PS2 Keyboard/Mouse Connector(CN13) The PCM-6897/L board provides a pin header keyboard/Mouse connector, which supports both a keyboard and a PS/2 style mouse. | Pin | Signal | |-----|---------| | 1 | KB_DATA | | 2 | KB_CLK | | 3 | GND | | 4 | +5V | | 5 | MS_DATA | | | Compact Board | PCM-6897/L | |---|---------------|------------| | | MC CLIV | | | ь | MS_CLK | | #### 2.26 VGA Display Connector(CN14) | Pin | Signal | Pin | Signal | |-----|--------|-----|--------| | 1 | RED | 2 | +5V | | 3 | GREEN | 4 | GND | | 5 | BLUE | 6 | N.C | | 7 | N.C | 8 | DDCDAT | | 9 | GND | 10 | HSYNC | | 11 | GND | 12 | VSYNC | | 13 | GND | 14 | DDCCLK | | 15 | GND | 16 | GND | #### 2.27 TTL_LCD Connector(CN15) | Pin | Signal | Pin | Signal | |-----|--------|-----|--------| | 1 | +5V | 2 | +5V | | 3 | GND | 4 | GND | | 5 | +3.3V | 6 | +3.3V | | 7 | ENBKL | 8 | GND | | 9 | BLUE0 | 10 | BLUE1 | | 11 | BLUE2 | 12 | BLUE3 | | 13 | BLUE4 | 14 | BLUE5 | | 15 | BLUE6 | 16 | BLUE7 | | 17 | GREEN0 | 18 | GREEN1 | | | | | | | | Compact Board | | PCM-6897/L | |----|---------------|----|------------| | | | | | | 19 | GREEN2 | 20 | GREEN3 | | 21 | GREEN4 | 22 | GREEN5 | | 23 | GREEN6 | 24 | GREEN7 | | 25 | RED0 | 26 | RED1 | | 27 | RED2 | 28 | RED3 | | 29 | RED4 | 30 | RED5 | | 31 | RED6 | 32 | RED7 | | 33 | GND | 34 | GND | | 35 | DOT_CLOCK | 36 | VSYNC | | 37 | DE | 38 | HSYNC | | 39 | N.C | 40 | ENAVEE | #### 2.28 LVDS Connector(CN17) | Pin | Signal | Pin | Signal | |-----|-------------|-----|-------------| | 1 | LVDS_TX1+ | 2 | LVDS_TX1- | | 3 | GND | 4 | GND | | 5 | LVDS_TXCLK+ | 6 | LVDS_TXCLK- | | 7 | GND | 8 | PPVCC | | 9 | PPVCC | 10 | PPVCC | | 11 | LVDS_TX2+ | 12 | LVDS_TX2- | | 13 | GND | 14 | GND | | 15 | LVDS_TX0+ | 16 | LVDS_TX0- | | 17 | LVDS_TX3+ | 18 | LVDS_TX3- | | 19 | ENBKL | 20 | N.C | #### 2.29 TV_Out Connector(CN18) | Pin | Signal | Pin | Signal | | |-----|--------|-----|--------|--| | | | | | | | | Compact Board | | PCM-6897/L | |---|---------------|---|------------| | | | | | | 1 | Υ | 2 | CVBS | | 3 | GND | 4 | GND | | 5 | С | 6 | N.C | | 7 | GND | 8 | N.C | #### 2.30 Fan Connectors(CN19/CN20) You can attach two coolers on the CPU and the chassis respectively to diffuse heat more efficiently. The pin assignments of the two fan connectors are identical. See the following table for details. | Pin | Signal | |-----|-------------| | 1 | GND | | 2 | +12V | | 3 | Speed Sense | #### 2.31 Front Panel Connector(CN21) | Pin | Signal | Pin | Signal | |-----|---------------------|-----|---------------------| | 1 | Power On Button (-) | 2 | Power On Button (+) | | 3 | IDE LED (-) | 4 | IDE LED (+) | | 5 | External Buzzer (-) | 6 | External Buzzer (+) | | 7 | Power LED (-) | 8 | Power LED (+) | | 9 | Reset Switch (-) | 10 | Reset Switch (+) | #### 2.32 EIDE Connector(IDE1) You can attach up to two Enhanced Integrated Device Electronics hard disk drives to IDE1. The IDE controller of PCM-6897/L uses a PCI local bus interface. This advanced interface supports faster data transfer. #### Connecting the hard drive Wire number 1 on the cable is normally red or blue, and the other wires are usually gray. - 1. Connect one end of the cable to IDE1. Make sure that the red wire corresponds to pin 1 on the connector $\frac{1}{2}$ - 2. Plug the other end of the cable to the Enhanced IDE hard drive, with pin 1 on the cable corresponding to pin 1 on the hard drives. (See your hard drive's documentation for the location of the connector). Connect a second drive with another connector on the cable as described above. | Pin | Signal | Pin | Signal | |-----|-----------|-----|-------------| | 1 | IDE RESET | 2 | GND | | 3 | DATA7 | 4 | DATA8 | | 5 | DATA6 | 6 | DATA9 | | 7 | DATA5 | 8 | DATA10 | | 9 | DATA4 | 10 | DATA11 | | 11 | DATA3 | 12 | DATA12 | | 13 | DATA2 | 14 | DATA13 | | 15 | DATA1 | 16 | DATA14 | | 17 | DATA0 | 18 | DATA15 | | 19 | GND | 20 | N.C. | | 21 | REQ | 22 | GND | | 23 | IO WRITE | 24 | GND | | 25 | IO READ | 26 | GND | | 27 | IO READY | 28 | GND | | 29 | DACK | 30 | GND | | 31 | IRQ14 | 32 | N.C. | | 33 | ADDR1 | 34 | UDMA DETECT | | 35 | ADDR0 | 36 | ADDR2 | | | Compact Board | | PCM-6897/L | |----|---------------|----|------------| | | | | | | 37 | CS#1 | 38 | CS#3 | | 39 | LED | 40 | GND | #### 2.33 10/100Base-Tx Ethernet Connector(LAN1) This 10/100Base-T Ethernet connector is a standard RJ-45 connector. The onboard Intel 815E Fast Ethernet controller supports 10Mb/s and 100 Mb/s N-way auto-negotiation operations. | Pin | Signal | Pin | Signal | |-----|----------|-----|----------| | 1 | TX+ | 2 | TX- | | 3 | RX+ | 4 | Temp_GND | | 5 | Temp_GND | 6 | RX- | | 7 | Temp_GND | 8 | Temp_GND | # Chapter 3 # Award BIOS Setup #### 3.1 System Test and Initialization These routines test and initialize board hardware. If the routines encounter an error during the tests, you will either hear a few short beeps or see an error message on the screen. There are two kinds of errors: fatal and non-fatal. The system can usually continue the boot up sequence with non-fatal errors. Non-fatal error messages usually appear on the screen along with the following instructions: Press <F1> to RESUME Write down the message and press the F1 key to continue the boot up sequence. #### **System configuration verification** These routines check the current system configuration against the values stored in the CMOS memory. If they do not match, the program outputs an error message. You will then need to run the BIOS setup program to set the configuration information in memory. There are three situations in which you will need to change the CMOS settings: - 1. You are starting your system for the first time - 2. You have changed the hardware attached to your system - 3. The CMOS memory has lost power and the configuration information has been erased. The PCM-6897/L CMOS memory has an integral lithium battery backup for data retention. However, you will need to replace the complete unit when it finally runs down. #### 3.2 Award BIOS Setup Awards BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. This type of information is stored in battery-backed CMOS RAM so that it retains the Setup information when the power is turned off. #### **Entering setup** Power on the computer and press immediately. This will allow you to enter Setup. #### **Standard CMOS Features** Use this menu for basic system configuration. (Date, time, IDE, etc.) #### **Advanced BIOS Features** Use this menu to set the advanced features available on your system. #### **Advanced Chipset Features** Use this menu to change the values in the chipset registers and optimize your system performance. #### **Integrated Peripherals** Use this menu to specify your settings for integrated peripherals. (Primary slave, secondary slave, keyboard, mouse etc.) #### **Power Management Setup** Use this menu to specify your settings for power management. (HDD power down, power on by ring, KB wake up, etc.) #### PnP/PCI Configurations This entry appears if your system supports PnP/PCI. #### **PC Health Status** This menu allows you to set the shutdown temperature for your system. #### Frequency/Voltage Control Use this menu to specify your settings for frequency/voltage control. #### Load Fail-Safe Defaults Use this menu to load the BIOS default values for the minimal/stable performance for your system to operate. #### **Load Optimized Defaults** Use this menu to load the BIOS default values that are factory settings for optimal performance system operations. While AWARD has designated the custom BIOS to maximize performance, the factory has the right to change these defaults to meet their needs. #### Set Supervisor/User Password Use this menu to set Supervisor/User Passwords. #### **Save and Exit Setup** Save CMOS value changes to CMOS and exit setup. #### **Exit Without Saving** Abandon all CMOS value changes and exit setup. #### 3.3 Standard CMOS Features When you choose the Standard CMOS Features option from the INITIAL SETUP SCREEN menu, the screen shown below is displayed. This standard Setup Menu allows users to configure system components such as date, time, hard disk drive, floppy drive and display. Once a field is highlighted, on-line help information is displayed in the right box of the Menu screen. Please note that PCM-6897 and PCM-6897 L differs in the display setting sections. The **LCD&CRT**, **Panel**, **TV Mode**, won't be shown in the bios of PCM-6897L. #### PCM-6897 #### PCM-6897L ``` Drive A Drive B [None] Video Halt On [All , But Keyboard] Base Memory Extended Memory Total Memory 645536K ``` #### 3.4 Advanced BIOS Features By choosing the Advanced BIOS Features option from the INITIAL SETUP SCREEN menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.5 Advanced Chipset Features By choosing the Advanced Chipset Features option from the INITIAL SETUP SCREEN menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.6 Integrated Peripherals By choosing the Integrated Peripherals from the INITIAL SETUP SCREEN menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.7 Power Management Setup By choosing the Power Management Setup from the INITIAL SETUP SCREEN menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.8 PnP/PCI Configurations By choosing the PnP/PCI configurations from the Initial Setup Screen menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.9 PC Health Status By choosing the PC Health Status from the Initial Setup Screen menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.10 Frequency/Voltage Control By choosing the Frequency/Voltage Control from the Initial Setup Screen menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCM-6897/L. #### 3.11 Load Fail-Safe Defaults When you press <Enter> on this item you get a confirmation dialog box with a message similar to: Load Fail-Safe Default (Y/N)? Pressing "Y" loads the BIOS default values for the most stable, minimal performance system operations. #### 3.12 Load Optimized Defaults When you press <Enter> on this item you get a confirmation dialog box with a message similar to: Load Optimized Defaults (Y/N)? Pressing "Y" loads the default values that are manufacturer's settings for optimal performance system operations. #### 3.13 Set Supervisor/User Password You can set either SUPERVISOR or USER PASSWORD, or both of them. The difference between the two is that the supervisor password allows unrestricted access to enter and change the options of the setup menus, while the user password only allows entry to the program, but not modify options. To abort the process at any time, press Esc. In the Security Option item in the BIOS Features Setup screen, select System or Setup: **System** Enter a password each time the system boots and whenever you enter Setup. **Setup** Enter a password whenever you enter Setup. NOTE: To clear the password, simply press Enter when asked to enter a password. Then the password function is disabled. #### 3.14 Save & Exit Setup If you select this option and press <Enter>, the values entered in the setup utilities will be recorded in the chipset's CMOS memory. The microprocessor will check this every time you turnon your system and compare this to what it finds as it checks the system. This record is required for the system to operate. #### 3.15 Exit without saving Selecting this option and pressing <Enter> lets you exit the Setup program without recording any new values or changing old ones. Chapter Driver Installation PCM-6897/L comes with a CD-ROM which contains most of drivers and utilities your will need. There is several installation ways depends on the driver package under different Operating System application. ## We recommend that the system driver installation procedure must be performed first. If you utilize Windows NT series OS, you are strongly recommended to download the latest version Windows NT Service Pack from Microsoft website and install it before installing any driver. #### 4.1 Installation 1: #### Applicable for Windows 9x/ME/NT 4.0 - 1. Insert the PCM-6897/L CD-ROM into the CD-ROM Drive. - From the CD-ROM, select the desired component Driver folder, select the desired Operation System folder to double click on the Setup.exe icon. A driver installation screen will appear. (Notice: take VGA driver installation under Windows 98 for example, choose the corresponding folder depending on your OS) - 3. A driver installation screen will appear, please follow the onscreen instructions to install the driver in sequence and click on the Next button. - (Notice: In some cases the system will ask you to insert Windows 98 CD ROM and key in its path. Then click on the OK button to key in path.) - 4. Click on the **Finish** button to finish installation process. And allow the system to reboot. #### 4.2 Installation 2: #### Applicable for Windows 9x/ME - 1. Insert the **PCM-6897/L CD-ROM** into the CD-ROM Drive. - Click on Start button, select the Settings, then click on the Control Panel icon. - 3. Double click on the **Add/Remove Hardware** icon and **Add New Hardware Wizard** will appear. Click on the **Next** button. - 4. Select **Search for the best driver for your device** (**Recommended**) and click on the **Next** button. - Select **Specify a location**, click on **Have Disk** button then key in the CD-ROM path and specify component drivers and OS folders. Then click on the **Next** button. - The Wizard shows that Windows driver file search for the device. Click on the **Next** button. - 7. The system will ask you to insert Windows 98 CD-ROM. Click on the **OK** button to insert CD-ROM and key in path. - 8. Click on the **OK** button. - 9. Click on the **Finish** button to finish installation process. And allow the system to reboot. #### 4.3 Installation 3: #### **Applicable for Windows NT 4.0** - 1. Insert the **PCM-6897/L CD-ROM** into the CD-ROM Drive. - Start system with Windows NT 4.0 installed. IMPORTANT: When the "Please select the operating system to start..." message is displayed, select "Windows NT Workstation Version 4.00 [VGA mode]". - From Start, select the Settings group, then click on the Control Panel icon. - In the Control Panel, select the desired device and click on the icon. - 5. Follow the step-by-step instruction and click on **OK** button. - 6. Click on the **Have Disk...** button. - Key in CD-ROM path and specify component drivers, then click on the **OK** button. - 8. From the list of displayed devices, select your desired device. - 9. If a message appears stating the driver is already installed on the system, and asks if you want to use the current or new drivers, be sure to select the **New** button. - 10. If prompted for the driver diskette a second time, click on the **Continue** button. - (Notice: In some cases the system will ask you to insert Windows NT CD-ROM. Follow its instructions to complete the setup procedures.) - When the message "The drivers were successfully installed" is displayed, remove the display driver diskette, then click on the OK button. - 12. Reboot the system. # Programming the Watchdog Timer #### A.1 Watchdog timer of PCM-6897/L PCM-6897/L utilizes ITE 8712 chipset as its watchdog timer controller. Below are the procedures to complete its configuration and the AAEON intial watchdog timer program is also attached based on which you can develop customized program to fit your application. #### A.2 Configuring sequence description After the hardware reset or power-on reset, the ITE 8712 enters the normal mode with all logical devices disabled except KBC. The initial state (enable bit) of this logical device (KBC) is determined by the state of pin 121 (DTR1#) at the falling edge of the system reset during power-on reset. There are three steps to complete the configuration setup: (1) Enter the MB PnP Mode; (2) Modify the data of configuration registers; (3) Exit the MB PnP Mode. Undesired result may occur if the MB PnP Mode is not exited normally. #### (1) Enter the MB PnP Mode To enter the MB PnP Mode, four special I/O write operations are to be performed during Wait for Key state. To ensure the initial state of the key-check logic, it is necessary to perform four write operations to the Special Address port (2EH). Two different enter keys are provided to select configuration ports (2Eh/2Fh) of the next step. | | Address Port | Data Port | |---------------------|--------------|------------------| | 87h, 01h, 55h, 55h: | 2Eh | 2Fh | #### (2) Modify the Data of the Registers All configuration registers can be accessed after entering the MB PnP Mode. Before accessing a selected register, the content of Index 07h must be changed to the LDN to which the register belongs, except some Global registers. #### (3) Exit the MB PnP Mode Set bit 1 of the configure control register (Index=02h) to **1** to exit the MB PnP Mode. #### **WatchDog Timer Configuration Registers** #### LDN Index R/W Reset Configuration Register or Action | All | 02H | W | N/A | Configure Control | |-----|-----|-----|-----|-------------------------------------------| | 07H | 71H | R/W | 00H | WatchDog Timer Control Register | | 07H | 72H | R/W | 00H | WatchDog Timer Configuration Register | | 07H | 73H | R/W | 00H | WatchDog Timer Time-out Value
Register | #### **Configure Control (Index=02h)** This register is write only. Its values are not sticky; that is to say, a hardware reset will automatically clear the bits, and does not require the software to clear them. #### Bit Description - 7-2 Reserved - 1 Returns to the Wait for Key state. This bit is used when the configuration sequence is completed - Resets all logical devices and restores configuration registers to their power-on states. #### WatchDog Timer Control Register (Index=71h, Default=00h) #### Bit Description - 7 WDT is reset upon a CIR interrupt - 6 WDT is reset upon a KBC (mouse) interrupt - 5 WDT is reset upon a KBC (keyboard) interrupt - 4 WDT is reset upon a read or a write to the Game Port base address - 3-2 Reserved - 1 Force Time-out. This bit is self-clearing - 0 WDT Status - 1: WDT value reaches 0. - 0: WDT value is not 0 ## WatchDog Timer Configuration Register (Index=72h, Default=00h) #### Bit Description - 7 WDT Time-out value select. - 1: Second - 0: Minute - 6 WDT output through KRST (pulse) enable - 5-4 Reserved - 3-0 Select the interrupt level Note for WDT ### WatchDog Timer Time-out Value Register (Index=73h, Default=00h) #### Bit Description 7-0 WDT Time-out value 7-0 #### A.3 IT8712 initial WatchDog timer program MODEL SMALL .CODE #### Main: CALL Enter_Configuration_mode CALL Check_Chip mov cl, 7 call Set_Logic_Device ;time setting mov cl, 10; 10 Sec dec al #### Watch_Dog_Setting: ;Timer setting mov al, cl mov cl, 73h call Superio_Set_Reg ;Clear by keyboard or mouse interrupt mov al, 0f0h mov cl, 71h call Superio_Set_Reg ;unit is second. mov al, 0C0H mov cl, 72h call Superio_Set_Reg ; game port enable mov cl, 9 call Set_Logic_Device Initial OK: CALL Exit_Configuration_mode MOV AH,4Ch INT 21h Enter_Configuration_Mode PROC NEAR MOV SI,WORD PTR CS:[Offset Cfg_Port] MOV DX,02Eh MOV CX,04h Init_1: MOV AL,BYTE PTR CS:[SI] OUT DX,AL INC SI LOOP Init_1 RET Enter_Configuration_Mode ENDP Exit_Configuration_Mode PROC NEAR MOV AX,0202h CALL Write_Configuration_Data RET Exit_Configuration_Mode ENDP Check_Chip PROC NEAR MOV AL,20h CALL Read_Configuration_Data CMP AL,87h JNE Not_Initial MOV AL,21h CALL Read_Configuration_Data CMP AL,12h JNE Not Initial Need_Initial: STC RET Not_Initial: CLC RET Check_Chip ENDP Read_Configuration_Data PROC NEAR MOV DX,WORD PTR CS:[Cfg_Port+04h] OUT DX,AL MOV DX,WORD PTR CS:[Cfg_Port+06h] IN AL,DX RET Read Configuration Data ENDP Write Configuration Data PROC NEAR MOV DX,WORD PTR CS:[Cfg_Port+04h] OUT DX,AL XCHG AL,AH MOV DX,WORD PTR CS:[Cfg_Port+06h] OUT DX,AL RET Write_Configuration_Data ENDP Superio_Set_Reg proc near push ax DX,WORD PTR CS:[Cfg_Port+04h] MOV al,cl mov dx,al out ax pop inc dx dx,al out ret Superio_Set_Reg endp cx Set_Logic_Device proc near push ax push xchg al,cl cl,07h mov Superio_Set_Reg call pop cx pop ax ret Set_Logic_Device endp ;Select 02Eh->Index Port, 02Fh->Data Port Cfg_Port DB 087h,001h,055h,055h DW 02Eh,02Fh #### END Main **Note**: Interrupt level mapping 0Fh-Dh: not valid 0Ch: IRQ12 . • . 03h: IRQ3 02h: not valid 01h: IRQ1 00h: no interrupt selected # **Optional Extras** #### **B.1 PCM-10689-1 Wiring Kit** The cable kit PCM-10689-1 includes the following cables: | P/N | Decription | Termination Connector | |-------------------------------------|-----------------------------------|--------------------------------------| | 1701400453 | 3.5" IDE cable | 2.54mm/40-PIN | | 1701340600 | Dual Floppy cable, 3.5" and 5.25" | 2.00mm/34-PIN | | 1701400180 | Serial Port cable | 2.54mm/40-PIN | | 1701260308 | Parallel Port cable | 2.00mm/25-PIN to 26-PIN | | 1701160152 | VGA CRT cable | 2.54mm/15-PIN to 16-PIN | | 1700080204 Keyboard and Mouse cable | | 2.54mm, two 6-PIN mini DIN
Header | | 1700140510 | Audio cable | 2.00mm/14-PIN | | 1709100201 USB cable | | 2.00mm/10-PIN |